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In this supplementary material, we provide more details
of our modules (Sec. A), implementation (Sec. B), proposed
datasets (Sec. C), experimental settings (Sec. D) and addi-
tional results (Sec. E).

A. Details of Modules
A.1. GMNet
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Figure 1. The architecture of GMNet. The encoder is ResNet-18.
The number denotes the output channel of each layer or block.

The GMNet consists of an encoder and five decoders. It
is similar to UniFuse [7]. The encoder is ResNet-18 and
the decoder consists of 11 convolution layers with skip-
connection. The detailed architecture is shown in Figure 1.
Each convolution layer is followed by an activate layer ex-
cept for last two layers. The activate layer is ELU. All of five
decoders have similar architectures. The number of the last
output channel at five branches are different. In particular,
one for depth, roughness and metalness; three for normal,
base color. The decoder network is described as:

1512—0256— k3, (1512 — 0256 — k3 + 1256 — 0128 — k3),
(1256 — 0128 — k3 + 1128 — 064 — k3), (1128 — 064 — k3
+ 164 — 0 — 32 — k3), 196 — 032 — k3 + 432 — 016 — k3),
(116 — 016 — k3 + 116 — 03/01 — k3).

*Co-corresponding authors. The project page is at https://lzleejean. git-
hub.io/PhyIR
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Figure 2. The architecture of LNet. It is similar to [1 1]. The num-
ber denotes the output channel of each layer or block. Number of
the last output channel is the total size of a light probe.

The term ¢ denotes the input channel, o is the output
channel, k is the kernel size and () represents the convo-
Iution block consisting of two convolution layers.

A.2. LNet

The architecture of LNet is similar to Invindoor [11]. In
Invindoor [ 1], the LightNet has three branches for spher-
ical Gaussian parameters. For our LNet, we directly pre-
dict HDR environment map with an encoder and a decoder.
The detailed architecture is shown in Figure 2. Channels
of group in group normalization layer are 16. Each convo-
lution layer is followed by a ReLU activate function. The
whole network is described as:

164 —0128 — k4 —52—g16, 1128 — 0256 — k4 — 52— g16,
1256 — 0256 — k4 — s2 — g16, 256 — 0512 — k4 — s2 — ¢16,
1512—-01024 —k3—51—¢16, 11024 —0512— k1 —s1—g16,
11024 — 0256 — k3 — s1 —g16, 1512 — 0256 — k3 — s1 — g16,
1512 — 0128 — k3 — 51— g16, 1256 — 0128 — k3 — s1 — g16,
(4128 — 0512 — k3 — 51 + 4512 — oh X w X 3 — k3 — s1).

Here, the term g is the channel of a group, and s denotes
the stride of a convolution layer.
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Figure 3. Comparison of the rerendering module. From left to right, source image from panorama, re-rendered image, re-rendered diffuse
image, re-rendered specular image, our re-rendered specular image using high-resolution and denser light probes. Note that we bright the
specular image for a better visualization. We observe that our module produces realistic details, even in glossy surface and metal surface.

A.3. Rendering layer

BRDF model. We use a physics-based BRDF represen-
tation in our network named microfacet BRDF. Although
InvIndoor [! 1] also applies microfacet BRDF, it does not
model metalness, which is essential in current material as-
sets. In Eq. 9 in the main paper, f; and f, are defined as:

f= 22 1)
DFG
fS:W’ (2)

where B is base color; M is metalness; [ denotes light di-
rection; n denotes normal; v denotes view direction; D de-
notes Normal Distribution Function (NDF); F’ denotes Fres-
nel function and G is the Geometry Factor. We adopt UE4’s
specular shading model [&].

The specular D:
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(a) Uniform sampling

(b) Importance sampling

Figure 4. Visualization of importance sampling. The yellow plane
represents the surface and the green denotes the f, lobe of point p.
The uniform sampling method is unable to cover main meaningful
direction, leading large variance results; however, importance sam-
pling only computes the important direction according to known
BRDF of surface leading reflectance with sharper details.

Importantce sampling. As described in Sec. 3.2 in the
main paper, we calculate Monte Carlo numerical integra-
tion with importance sampling to render detailed specular
reflectance. Specifically, we define the p of Eq.10 in the
main paper as:

diffuse
specular ’

(6)

nd
p= { D(n-h)
4(v-h)

where D is the specular D defined in Eq. 3.

As shown in Figure 4, for a surface point p, if sampled di-
rections are randomly or uniformly selected, most samples
cannot be fully employed. Therefore, the re-render result
has a large variance.

As shown in Figure 3, our re-render module can effec-
tively render realistic specular reflectance. Thus, our model
is able to provide meaningful physical constraints on all
components.



Table 1. The inference time of each sub-module. Our entire frame-
work can be trained efficiently.

GMNet | LNet | Rendering | ooy
layer
Time | ¢ 4 109 8
(ms)

B. Details of Implementation
B.1. Training

We first use Adam [9] to train the GMNet for 120 epochs
with a learning rate as 1e-4. The batch size is 8. We set 3,
Br, B, Bp to 1.0 and B, Bgradient to 0.1. The resolution
of the input panorama, geometry and material is 256x512.

Second, we frozen the GMNet and use Adam [9] to train
the LNet for 90 epochs with a learning rate as le-4. The
batch size is 4. We set 1,, Bsc, Brender 10 1.0. The reso-
lution of the re-rendered image is 128 x256. The resolution
of each light probe is 16x32.

Third, we jointly finetune the GMNet and LNet for 10
epochs with a learning rate as le-5. The batch size is 4. We
set 81, Brender to 1.0 and Bsc to 0.1.

Last but not least, we frozen the GMNet and use
Adam [9] to train the GSNet for 80 epochs with a learn-
ing rate as Se-4. The batch size is 16. We set 8, g to 1.0,
Bn to 0.1 and radius of the guided filter to 2.

B.2. Inference

The inference time of each sub-module is averaged over
2000 images with a batch size of 1, which is clocked on a
Tesla V100 GPU. The results are summarized in Table 1.
Thus, our framework can be trained end-to-end efficiently.

With a batch size of 1, our framework consumes less 6G
GPU memory without quantization.

C. Details of Proposed Datasets
C.1. FutureHouse

As described in Sec. 3.1 in the main paper, our artist-
designed dataset named FutureHouse is very close to real-
world data thanks to expensive assets and powerful render-
ing technologies. As shown in Table 1 in the main paper,
our dataset provides comprehensive annotations that aid re-
search on multiple topics. We introduce the production of
dataset in the following.

We first design massive and diverse high-resolution mod-
els by a large number of professional designers. The cate-
gory of models includes common furnitures and essential
decorative ornaments, as shown in Figure 5. The changeable
style of models is capable of simulating a variety of house
types. Then, to reduce the gap with the real-world, excel-
lent layouts are designed by over 100 professional artists.
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Figure 5. Examples of our high-quality objects. More than 70,000
models with high-resolution meshes and material significantly im-
prove the realism of rendered images and the diversity of our
dataset.

Layouts Renderings

Figure 6. Our FutureHouse dataset.

As shown in Figure 6, our indoor scenes are very close to
the real-house in layout, which greatly reduces the diver-
gence between our data and the real-world data. Lastly, we
use a GPU cluster consisting of 32 Quadro RTX 8000 GPUs
and a real-time ray tracing rendering engine, UE4 [2], to ef-
ficiently render high-quality images. Rendering this dataset
spends almost one month.

We provide more detailed examples for all renderings,
including final image, depth, normal, base color, roughness,
metalness, mask of light source and transmission, and per-
pixel illumination in Figure 7.

Rendering color, geometry and material images with 480
x 640 resolution costs total 600 seconds per image and ren-
dering per-pixel SV environment maps costs 100 seconds
per image in OpenRooms [12]. In our FutureHouse, render-
ing color, geometry and material images with 512 x 1024
resolution costs total less than 1 second and rendering per-
pixel SV environment map costs almost 9 hours. Our light-
ing annotation is a denser high-resolution per-pixel HDR il-
lumination map with (3, 128 x 128, 256 x 256) resolution
while the shape of OpenRooms [12] is (3, 120 x 16, 160
x 32). The comparison of quality between selected exam-
ples from OpenRooms [12] and our FutureHouse is shown
in Figure 8. The noise decreases greatly in our renderings.



Rendered

Base
Roughness

Metalness

= 3+

©)

Figure 7. Detailed examples of annotations. Our GT annotations
include depth, normal, base color, roughness, metalness, mask of
emissive material and transparent material, and per-pixel lighting.
For a better visualization, we only show two selected light probes.

Lighying

Note that our light probe images also use the same render-
ing parameters as color images. As shown in Figure 9, our
light probes are sharper with more details of full-spherical
environment, which is important for SC loss proposed in
Sec. 3.2 in the main paper.

C.2. The SC illumination dataset

As described in Sec. 4 in the main paper, we capture
a panoramic dataset including 7 indoor scenes and 72 lo-
cal high-resolution HDR light probes. Compared to [5],
the SC light probe is the most critical difference. We en-
courage readers to view SC lighting video in supplemen-
tary videos. Another important difference is that all of our
images are high-resolution and panoramic while the in-
put image of [5] is perspective and the light probe is low-
resolution without details of whole environment. More ex-

(b) Examples from FutureHouse

Figure 8. Qualitative comparison of rendering quality between
OpenRooms [12] and FutureHouse. Our dataset is more photo-
realistic with less noise.

(b) Examples from FutureHouse

Figure 9. Qualitative comparison of light probes between Open-
Rooms [11] and ours. For a fair comparison, the resolution of our
shown light probes is equal to OpenRooms, (16 x 32). Our light
probes are sharper with more details of whole environment, which
is important for proposed SC loss.



Source panorama

SV illumination

Figure 10. Examples of our captured SV illumination. All of our panoramas, including source input and light probes, are fully HDR and

high-resolution (8K).

Figure 11. The virtual object insertion of our captured SC illumi-
nation dataset. The virtual object shows realistic complex lighting
effects. Please zoom in for details.

amples of captured SV lighting are shown in Figure 10. We
also insert some virtual objects into these scenes based on
captured high-quality illumination in Figure 11. The virtual
object shows realistic complex lighting effects, e.g., soft
shadows and highlight.

D. Details of Experiments

D.1. Our microfacet BRDF renderer based Mitsuba

To calculate the relighting error of virtual spheres with
different material, we realize the BRDF model introduced
in Sec. A.3 using a physics-based renderer named Mit-

suba [60], which is licensed under GNU 3.0. It can handle
complex material, e.g. metal material and mirror material,
in a uniform microfacet model. In our experiments, we ren-
der spheres with predicted illumination or GT illumination
using image-based lighting.

D.2. Virtual object insertion

To render the virtual object into real image, two methods
are used to fuse them. One is similar with InvIndoor [11],
rendering two images, i.e., I,y and Ip;. I,y is the rendered
image containing both the virtual object and the virtual
plane. I,; is the rendered image containing only the virtual
plane. Rendering object and plane together can ensure inter-
reflectances between them are properly simulated. Detailed
formulation can be found in InvIndoor [11]. However, this
fusion method generates strong artifacts in object with spec-
ular material, because the virtual plane is inconsistent with
the real plane in the texture detail. Therefore, we propose
the other one, rendering three images, i.e., Iy, I, and 1;.
Iop; is the rendered image containing only the virtual ob-
ject. For the object region of final image, we only use the
value in Ip;:

Inew © Mobj = Loby © Moij (7)

where M;; is binary mask covering only the virtual object.
This fusion method does not consider the inter-reflectance
result on virtual object. Note that it also generates the inter-
reflectance result on virtual plane, e.g., shadows and specu-
lar reflectance caused by the object. It can ensure the bottom
region of specular virtual object has detailed texture that is



Table 2. The microfacet parameters of three spheres for rendering.
Three spheres have different material, including absolute diffuse,
matte sliver and mirror sliver.

Diffuse Matte Sliver Mirror Sliver
Base color | (0.5,0.5,0.5) | (0.972,0.960, 0.915) | (0.972, 0.960, 0.915)
Roughness 1.0 0.5 0.0
Metalness 0.0 1.0 1.0

consistent with real images.

The selection of these methods depends on the material
of the object and the quality of albedo and lighting. Specif-
ically, the albedo prediction of InvIndoor [ 1] has more de-
tails but their predicted illumination lacks high-frequency
details. The former fusion method is more suitable. In
contrast, for the projection-based method [3, 4, 10], it can
generate high-quality illumination with high-frequency de-
tails from the input panorama. However, these method lack
albedo estimation or predict albedo with less details. There-
fore, the latter fusion method is more suitable.

D.3. Light comparison

As described in Sec.4.2 in the main paper, we use the
widely used metric, the relighting error, to evaluate the
performance of different approaches. To achieve a more
comprehensive comparison, we relight three virtual spheres
with different material, pure diffuse, matte sliver and mirror
sliver. The diffuse sphere and matte sliver will evaluate the
total radiance and HDR, and the mirror sliver will evaluate
the high-frequency detail of predicted illumination.

For the quantitative result of Table 5 in the main paper,
microfacet parameters of three spheres rendered by our ren-
derer (Sec. D.1), are shown in Table 2. The base color pa-
rameter of the glossy sphere for qualitative results of Figure
7 in the main paper is (0.8, 0.8, 0.8), which equals to the
setting in InvIndoor [11].

D.4. Depth comparison

In Table 7 in the main paper and Table 3, all approaches
are evaluated on standard metrics, including mean absolute
error (MAE), absolute relative error (Abs Rel), square rel-
ative error (Sq Rel), root mean square error (RMSE), root
mean square error in log space (RMSE log), and relative ac-
curacy metrics §", which represents the ratio of pixels with
a relative error lower than 1.25™.

E. Additional Results
E.1. Ablation study

We verify the validity of CirP [14] and joint training on
depth estimation in Table 3, the CirP can extracts robust
3D features from panoramas and the joint training includ-
ing our GMNet, LNet and physics-based renderer provides
more physical constraints to assist depth estimation.

Base color

Roughness

Figure 12. Ablation study of the GSNet on FutureHouse.

Additionally, we provide several qualitative results for
ablation study of the GSNet. As shown in Figure 12, the
GSNet can significantly generate smoother results.

E.2. Qualitative results of geometry and material

Comparison in virtual data. As described in the Sec. 4.1
in the main paper, we provide more qualitative results on
Futurehouse and synthetic data provided by LRG360 [10].
More examples on Futurehouse in Figure 13 and more ex-
amples on synthetic data provided by LRG360 [10] in Fig-
ure 14. Moreover, we provide more examples of re-rendered
images in Figure 16. The proposed method can reproduce
realistic specular reflectance on glossy material and even in
mirror material.

Comparison in real data. We show the qualitative result
on real data provided by LRG360 [10] in Figure 5 in the
main paper. In addition, we provide more examples on real
images in Figure 15 and Figure 17.

E.3. Qualitative results of illumination

We show more results of illumination on our unseen syn-
thetic data in Figure 18 and Figure 19. We observe that our
method can recover the illumination that is similar to GT
in structure. Moreover, we provide qualitative results of dy-
namic virtual object insertion using our predicted illumina-
tion in Figure 20. Our method generates coherent virtual ob-
ject insertion results without any temporal constraints. More
animations in supplementary videos.

As described in Sec. 4.2 in the main paper, we provide
more virtual object insertion results for the lighting com-



Table 3. Ablation study of CirP and joint training on depth estimation. The performance evaluated on standard metrics are shown in below.

MAE | AbsRel | SqRel | RMSE | RMSElog | Logio | 11 | 621 | 057
Baseline 0.0905 | 0.0675 | 0.0266 | 0.1915 | 0.0510 | 0.0300 | 0.9468 | 0.9818 | 0.9910
+CirP 0.0865 | 0.0642 | 0.0255 | 0.1876 | 0.0490 | 0.0286 | 0.9506 | 0.9831 | 0.9916
+CirP+Joint | 0.0846 | 0.0638 | 0.0255 | 0.1859 | 0.0485 | 0.0279 | 0.9516 | 0.9833 | 0.9917
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Figure 13. Qualitative comparison of material estimation on Fu-
tureHouse.

parison in Figure 21. In addition, we also show predicted or
GT illumination at each spatial position. Our method can re-
cover more detailed illumination with correct spatial struc-
ture compared to InvIndoor [1 1]. More dynamic animations
in supplementary videos. We use a video frame interpola-
tion method named DAIN [1] to generate high frame-rate
videos on our SC illumination dataset.

E.4. Limitation and future work

The proposed SC loss, as shown in Eq.2 in the main
paper, is based on the assumption that discontinuities of
nearby light probes mainly occur where the gradient of the

Albedo Refined Albedo Normal
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Figure 14. Qualitative comparison on synthetic data provided by
LRG360 [10].
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Figure 15. Qualitative comparison of material on real-world data.

global depth map is large. However, this assumption is a
simplification for visibility calculation, which will be lim-
ited in the shadow boundary.
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Figure 16. Qualitative comparison of re-rendered images.

Input Base color Roughness Normal
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Figure 17. Qualitative results on real-world data.

coarse 3D structure of the scene. Recently, the projection-
based lighting [10] and the volumetric lighting [13,15] show
great potential in detailed illumination. Incorporating these
representations into our physics-based in-network rendering
module is challenging yet meaningful.
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