
Primitive3D: 3D Object Dataset Synthesis from Randomly Assembled Primitives
Supplementary Material

Xinke Li1,* Henghui Ding2,3,* Zekun Tong1 Yuwei Wu1,† Yeow Meng Chee1
1National University of Singapore 2ByteDance 3ETH Zürich

{xinke.li, zekuntong}@u.nus.edu henghui.ding@vision.ee.ethz.ch {wyw, ymchee}@nus.edu.sg

A. Theoretical Analysis

A.1. Proof of Lemma 2

LEMMA 2. Let D = {xi}mi=1 and D′ = {x′
j}nj=1 denote

two distinct datasets, and ∆d̂k
(x;D,D′) denotes the MMD-

based data adaptivity of one data x ∈ D. With the as-
sumption that

∣∣∣∆d̂k
(x;D,D′)

∣∣∣ ≪ d̂k(D,D′), sorting the

data adaptivity ∆d̂k
(x;D,D′) can be achieved by sorting

the following proxy quantity

∆̃(x) ≜
1

n

∑
xj∈D′

k
(
x,x′

j

)
− 1

m− 1

∑
xi∈D

k (x,xi) . (1)

Proof. Let d̂2k denote d̂2k(D,D′), xi∗ denote one removed
sample from D, and d̂2k,̄i∗ denote d̂2k (D\xi∗ ,D′). By sub-
stituting the explicit definition of d̂2k, we have

d̂2k =
1

m2

∑
i,j

k (xi,xj)−
2

mn

∑
i,j

k
(
xi,x

′
j

)
+

1

n2

∑
i,j

k
(
x′
i,x

′
j

)
,

d̂2k,̄i∗ =
1

(m− 1)2

∑
i ̸=i∗,j ̸=i∗

k (xi,xj)−
2

(m− 1)n

∑
i ̸=i∗,j

k
(
xi,x

′
j

)
+

1

n2

∑
i,j

k
(
x′
i,x

′
j

)
.

(2)
Here, we define the following notation:

A =
∑
i,j

k (xi,xj) , B =
∑
i,j

k
(
xi,x

′
j

)
,

C =
∑
i,j

k
(
x′
i,x

′
j

)
, D = k (xi∗ ,xi∗) ,

(3)

It is known that when D and D′ are given, A, B, C, and D
are fixed constants. Then it is easy to check that the follow-

*Equal contribution
†Corresponding author

ing equalities hold.

d̂2k =
1

m2
A− 2

mn
B +

1

n2
C,

d̂2k,̄i∗ =
1

(m− 1)2

(
A− 2

∑
i

k (xi,xi∗) +D

)

− 2

(m− 1)n

(
B −

∑
j

k
(
xi∗ ,x

′
j

))
+

1

n2
C.

(4)

By Equation (4), we can calculate the difference between
d̂2
k,̄i∗

and d̂2k as

d̂2k,̄i∗ − d̂2k

=
2

m− 1

−
1

(m− 1)

∑
i

k (xi,xi∗) +
1

n

∑
j

k
(
xi∗ ,x

′
j

)+ E,

=
2

m− 1
∆̃(xi∗) + E

(5)
where E is a constant defined by

E =

(
1

(m− 1)2
−

1

m2

)
A+

(
2

(m− 1)n
−

2

mn

)
B +

D

(m− 1)2
.

(6)

Therefore, sorting difference of d̂2
k,̄i∗

− d̂2k for all xi∗ ∈ D
can be achieved by sorting the ∆̃(xi∗) in Equation (5).
Then we check the relationship between the data adaptiv-
ity ∆d̂k

(xi∗ ;D,D′) and difference d̂2
k,̄i∗

− d̂2k. From the
definition of data adaptivity in the main script [26], we have
the following equation

∆d̂k
(xi∗ ;D,D′) = d̂k,̄i∗ − d̂k. (7)

Let ∆d̂k ,̄i∗
= ∆d̂k

(xi∗ ;D,D′), we can obtain,

d̂2k,̄i∗ − d̂2k = 2d̂k∆d̂k ,̄i∗
+∆2

d̂k ,̄i∗
(8)

With the assumption of |∆d̂k ,̄i∗
| ≪ d̂k, the second term of

Equation (8) is negligible. As d̂k is a positive constant, we
can obtain

∆d̂k ,̄i∗
∝ d̂2k,̄i∗ − d̂2k. (9)

Thus, it is sufficient to sort the data adaptivity for all xi∗ ∈
D by sorting the proxy quantity ∆̃(xi∗).

Figure 1. MMD between Primitive3D and target dataset Model-
Net40, i.e. d̂k(Dp, Dt) during training with dataset distillation.

Remark. Indeed, the condition |∆d̂k ,̄i∗
| ≪ d̂k means

that removing xi∗ from D poses trivial effect on d̂k(D,D′).
We note that it can be easily fulfilled when the size of
dataset D is large. On the other hand, to verify the assump-
tion condition exactly, one still needs to calculate d̂k and
d̂k,̄i∗ in practice, which is against the purpose of computa-
tion reduction.

To check whether our dataset distillation method with
∆̃(x) sorting leads to a decrease in d̂k, we record the MMD
between the generated dataset Dp and the target dataset
Dt, i.e. d̂k(Dp,Dt), during the distillation process in Fig-
ure 1. It can be observed that d̂k(Dp,Dt) is constantly re-
duced by removing samples with smaller proxy quantities
by Lemma 2.

A.2. Analysis of RCT Samples

In this analysis, we first refine the definition of r-set and
Boolean set operations in RCT. Then, we present three ex-
amples to demonstrate how any 3D object can be repre-
sented or approximated by the RCT sample, when P con-
tains certain primitive types, like spheres, boxes, and tetra-
hedrons. Examples are shown in Figure 2.

Definition of r-set. Here we present the theoretical def-
inition of the r-set in solid modeling. The sets we are con-
cerned with are subsets of R3.

DEFINITION 1 (Regular Set [18]). The regularization of
a set X , reg(X), is the closure of the interior of X , i.e.,
reg(X) = cl(int(X)). A set Z is regular if reg(Z) = Z.

The regularized set is the standard model used in solid
modeling. The primary benefit of employing it to describe
solids is that ”dangling” edges or surfaces are eliminated
[4]. With the above definition, we refer to the r-set as a a
regularized set of the form ψ = {(x, y, z) : g(x, y, z) ≤ 0}
for some function g : R3 → R, of which the boundary
{(x, y, z) : g(x, y, z) = 0} is semi-analytic. More associ-
ated theoretical results can be found in [4].

Regularized Operation. Considering the definition of
the r-set, we are able to define regularized boolean set op-
erations as

X ∪∗ Y ≜ reg(X ∪ Y),

X ∩∗ Y ≜ reg(X ∩ Y),

X −∗ Y ≜ reg(X − Y),

where ∪, ∩, and − are the set operations of union, in-
tersection, and subtract, respectively. These definitions,
when combined with the definition of a regular set, result
in Lemma 1 in the main script [26], due to the fact that the
class of regular sets is closed under regularized set opera-
tions [9].

Union of spheres. A well-implemented representation
of 3D solids is the medial axis transform [3]. Instead of us-
ing the boundary to represent a solid, it uses the union of
infinite maximal spheres completely contained in the inte-
rior. The centers of these spheres are located on the medial
axis of the solid. Formally, the medial axes of a solid is ho-
motopy equivalent to the 3D solid [6], which suggests the
ability of the union of spheres to represent complex objects.

Union of boxes. The union of voxels, i.e., cubic boxes, is
a powerful and widely used representation of 3D solids [10].
Taking into account a voxel with edge length a, we can fill
bounded 3D objects with finite voxels by stacking them.
Additionally, we may anticipate a higher approximation ac-
curacy for the given object when the voxel edge a is lower.

Union of tetrahedrons. It is proved that any topologi-
cal 3-manifold is homemorphic to a union of tetrahedrons
[13,14]. Based on the above theory, a method to triangulate
3D manifold solids into multiple tetrahedrons is presented
in [12]. Furthermore, any tetrahedron can be obtained from
primitives by taking the intersection of four primitives with
planar boundaries, e.g., the box, cone and cylinder in our
primitive types. For this reason, our RCT samples can gen-
erate tetrahedrons for representing 3D solids.

Figure 2. The approximated representation of 3D object by the
union of spheres (left) [21], the union of boxes (middle) [11] and
the union of tetrahedrons (right) [2].

Primitive 1 2 3 4 5 6
Sample 2000 6000 12000 30000 50000 50000

Table 1. Statistics of the generated Primitive3D dataset.

B. More Implementation Details
B.1. Dataset Construction

In this subsection, we describe the process of generating
Primitive3D data in more depth, including the set of primi-
tive types and the generation time.

Primitive Type Set. The sphere, box, cylinder, torus,
and cone are the primitive types utilized in our RCT-based
data generation, which formally can be represented as

P = {ΨSphere,ΨBox,ΨCylinder,ΨTorus,ΨCone},

where each type Ψi has parameters ΘΨi , as seen in Figure 3.
In particular, because the canonical form of primitives is
bounded within the unit ball and centered at the original
point, the actual number of adjustable parameters for Ψi is
|ΘΨi | − 1. We also present the statistics of our Primitive3D
dataset generated in Table 1, which summarizes the number
of primitives and RCTs in the dataset.

Figure 3. Primitive types set P and the parameters per type.

Generation Time Profile. To demonstrate the cost effi-
ciency of our dataset collection, we present the time profile
for the mesh-based generation of Primitive3D data. The re-
sults in Figure 4 demonstrate that the generation time of an
RCT sample is proportional to its number of leaf nodes l,
which is because the executions of l− 1 boolean operations
consume more than 90% of the generation time. When l is
equal to 5, the largest leaf number that we use, the gener-
ation time is 0.075 s. To obtain more data in a short time,
we further explore parallel computing settings. As seen in
Figure 4, multithreading can help reduce running time, but
the benefit becomes minor as the number of processors in-
creases. Finally, when parallel computing is allowed, we
can produce 10,000 RCT samples with 6 leaves in only 2
minutes. The above time profiles are based on Intel Xeon
CPU E5-2680 v4 @ 2.40GHz and Ubuntu 18.04 operation
system.

B.2. Segmentation Loss Function

We define two supervised segmentation tasks based on
the generated labels, namely, predicting the primitive type

Figure 4. RCT sample generation time vs. leaves number l.
and instance which each point belongs to. Specifically, a
decoder is first employed on the point-wise feature output
from the encoder. The segmentation tasks are conducted on
the decoded embeddings, with the loss being the summation
of the losses of two branch tasks as:

Lseg = Ltype + α · (Lvar + Ldist + γ · Lreg︸ ︷︷ ︸
Linst

). (10)

where α, γ are the tunable weights, Ltype is the cross-
entropy loss of predicting yt as usual, and Linst is the clus-
tering loss of point embedding from [15, 23, 28]. It consists
of three components, in which Lvar pull the embedding to-
ward the cluster center, Ldist separates the distinct cluster
centers, and Lreg is the regularization term, with their for-
mulations as follows,

Lvar =
1

P

P∑
p=1

1

Np

Np∑
i=1

[∥µp − ei∥2 − δvar]
2
+ (11)

Ldist =
1

P (P − 1)

P∑
p=1

P∑
q ̸=p

[2δdist − ∥µp − µq∥2]2+ (12)

Lreg =
1

P

P∑
p=1

∥µp∥2 (13)

where P is the number of primitives in an object, Np is
the number of points in p-th primitive, ei ∈ Rne is the
embedding of i-th point in x and µp is the centroid of point
embeddings in p-th primitive. Also, [x]+ = max(x, 0) is
the hinge function, δdist and δvar are the margins for their
losses. We set α = 0.05 and γ = 0.001 in practice.

B.3. Network Architecture

As the recent development in graph-based neural net-
works [20], we imply dynamic graph neural network
(DGCNN) for our experiments. The DGCNN architec-
ture used follows the original implementation [24]. The
encoder-decoder network of DGCNN is illustrated in Fig-
ure 5. The global feature output from the encoder is a 1024-
dimensional vector, while the point-wise feature is a 1536-
dimensional vector.

Figure 5. Our model with DGCNN.

B.4. Setup for Additional Tasks

Part Segmentation. The part segmentation is a fine-
grained shape recognition task based on ShapeNetPart [27]
that contains 16881 shapes with 16 categories and 50 types
of parts. We use the same optimization setting as in [24].
The optimizer is chosen as Adam with the initial learning
rate of 0.003 and no weight decay. The learning rate decays
by 0.5 every 20 epochs until it reaches 0.00001. The total
number of epochs and batch size are set to 200 and 16. We
employ the pretraining & fine-tuning strategy to evaluate
our method, and these settings are consistent for both the
train-from-scratch and fine-tuning process. We also note
that the input point number of 2048 is set for all runs in-
cluding the train-from-scratch, pretraining, and fine-tuning
processes.

Unaligned Object Classification. Unaligned object
classification is to evaluate the sensitivity of learned fea-
tures to the rotation transformation as the real-world ob-
jects are often unaligned. The used unaligned object dataset
is derived from the aligned ModelNet40 dataset [25]. In
particular, we independently sample rotation matrices from
SO(3) and employ them on aligned ModelNet40 objects.
To control the magnitude of the sampled rotation angle in
practice, we apply the axis-angle representation of rotation
and limit the rotation angle in a range [0, ωmax]. When the
parameter ωmax is set to π, the rotation matrices would be
uniformly sampled from SO(3). To evaluate the effective-
ness of pretraining methods on this task, the feature en-
coders are first pretrained on the pretraining dataset. The
pretrained feature encoders are utilized to extract features
from the training split of the unaligned object dataset. A
linear SVM is trained on these extracted features and per-
forms classification on the unaligned test split.

C. More Experimental Results

This section illustrates our method’s performance on a
variety of tasks. We begin by supplementing the main
script with more object classification results. Following
that, we present the results of object part segmentation and
unaligned object classification in further detail.

Pretraining Pretraining Classification dataset
dataset method MN40 SONN SN10

ShapeNet [5] JigSaw3D [19] 88.6 72.7 69.8
ShapeNet [5] GraphTER [7] 88.7 74.7 71.0
ShapeNet [5] OcCo [22] 89.2 78.3 71.2
Primitive3D JigSaw3D [19] 87.4 71.8 70.1
Primitive3D GraphTER [7] 89.3 75.3 68.5
Primitive3D OcCo [22] 89.0 77.4 71.6
Primitive3D MT (ours) 89.4 78.5 72.9

Table 2. The comparison of cross-dataset classification accuracy
(%) on various 3D datasets.

C.1. Object Classification

Comparisons of Pretraining Method. Our comparison
in Section 5.2 of the main script [26] focuses on the com-
parison of pretraining datasets, while this section compares
our multi-task learning method with other pretraining ap-
proaches by fixing the dataset. In particular, the comparison
includes our implementation of three self-supervised meth-
ods: the jigsaw reconstruction task [19] (JigSaw3D), the
transformation equivariance task [7] (GraphTER) and the
occlusion completion task [22] (OcCo). The pretraining set-
tings of these methods follow the official implementation.
The setting of experiments follows the Cross Dataset Eval-
uation in Section 5.2 of the main script [26]. For a fair com-
parison, we apply the same model architecture (DGCNN)
and input point number (1024) for all runs.

The results in Table 2 demonstrate that our multi-task
learning constantly outperforms other pretraining methods
on the Primitive3D dataset. While the OcCo method can
perform well when utilized on both ShapeNet and Primi-
tive3D, there remains some gap between the best perfor-
mance of OcCo and the results of multi-task pretraining on
Primitive3D.

Training Curve of Fine-tuning. In this experiment, we
compare the training curves for three initializations of the
classifier weights: randomly initialized without pretraining;
multi-task pretraining on ShapeNet; multi-task pretraining
on Primitive3D. The setting of the experiment follows the
fine-tuning with all training samples in Section 5.2 of the

Method OA AA
bench bowl cone cup curtain door flower pot keyboard

20 20 20 20 20 20 20 20
PointNet+RI 89.1 85.6 75 100 90.0 55.0 95.0 90.0 25.0 95.0
DGCNN+RI 92.0 87.9 80.0 95.0 100 45.0 95.0 85.0 45.0 100
DGCNN+Ours 92.1 89.1 80.0 95.0 100 60.0 90.0 95.0 65.0 100

lamp laptop person radio sink stairs stool tent wardrobe xbox
20 20 20 20 20 20 20 20 20 20

85.0 100 85.0 75.0 85.0 80.0 60.0 95.0 70.0 70.0
85.0 100 85.0 70.0 85.0 90.0 75.0 95.0 75.0 80.0
85.0 100 95.0 85.0 90.0 90.0 75.0 95.0 75.0 75.0

Table 3. Overall, average and class-wise accuracy (%) on ModelNet40. Numbers under class names indicate the number of instances. We
select 18 classes with the fewest samples among all 40 classes. RI stands for the random initialization.

Method OA AA
bathhub bed bookshelf cabinet chair lamp monitor plant sofa table

26 85 146 149 801 41 61 25 134 301
PointNet+RI 76.4 62.0 50.0 54.1 55.5 62.4 91.9 58.5 63.9 52.0 54.5 77.7
DGCNN+RI 77.7 62.0 53.9 58.9 47.3 71.2 95.0 43.9 63.9 60.0 45.5 80.1
DGCNN+Ours 78.1 64.3 57.7 65.9 47.3 73.2 93.5 39.0 68.9 64.0 55.2 78.7

Table 4. Overall, average and class-wise Accuracy (%) on ScanNet10. Numbers under class names indicate the number of instances.

Method OA AA bag bin box cabinet chair desk display door shelf table bed pillow sink sofa toilet
17 40 28 75 78 30 42 42 49 54 22 21 24 42 17

PointNet+RI 76.6 70.9 70.6 75.0 39.3 76.0 98.7 73.3 83.3 90.5 77.6 77.8 59.1 52.4 50.0 92.9 47.1
DGCNN+RI 82.1 78.4 70.6 80.0 46.4 84.0 100 66.7 85.7 95.2 79.6 79.6 77.3 81.0 58.3 95.2 76.5
DGCNN+Ours 83.3 80.2 70.6 82.5 46.4 84.0 94.9 73.3 90.5 95.2 83.7 88.9 86.4 81.0 54.0 88.1 82.4

Table 5. Overall, average, and class-wise Accuracy (%) on ScanObjectNN. Numbers under class names indicate the number of instances.

Figure 6. Test accuracy curve on ModelNet40 using random
weights and pretrained weights from different datasets.

main script [26]. The training curves record the test accu-
racy per two epochs, which are depicted in Figure 6.

As seen in Figure 6, our pretraining strategy leads to
faster convergence of the classifier’s training. In particular,
our method obtains 90% accuracy in 10 epochs, whereas
randomly initialized weights require about 90 epochs.

Class-wise Results of Fine-tuning. In Table 3, Ta-

ble 4, and Table 5, we provide the per category classifica-
tion results of the full training data fine-tuning experiment.
As can be seen, our fine-tuning is usually more accurate
than training-from-scratch on categories with fewer sam-
ples, such as flowerpot in ModelNet40, plant in ScanNet10,
and toilet in ScanObjectNN. This demonstrates the potential
of our technique for dealing with undersampled categories
in object classification. However, the categories with noisy
and unstructured objects are difficult to learn with our meth-
ods, such as lamp in ScanNet10 and sofa in ScanObjectNN.

C.2. Unaligned Object Classification

We perform the unaligned object classification task to
verify the robustness of our learning method to rotation
transformation. We first train a feature encoder using su-
pervised learning on the aligned ModelNet40 dataset. Us-
ing the feature encoder as a baseline, we report the accu-
racy gain over the baseline by various pretraining methods
on Primitive3D in Table 6. Furthermore, we alter the up-
per bound on the rotation angle, i.e. ωmax, to control the
magnitude of random alignment.

As can be observed, our strategy, whether uses multi-
task learning or supervised tasks alone, learns rotation-
robust feature representations that obviously outperform
other learning methods. As the degree of alignment drops,

Pretraining
method

ωmax for random rotation
π
2

2π
3

5π
6 π

JigSaw3D [19] 3.1 3.9 4.6 5.1
OcCo [22] 2.8 3.7 6.4 8.6
GraphTER [7] -0.8 -3.1 -1.1 -2.8
Primitive3D+Sup 5.3 7.1 8.6 9.1
Primitive3D+Uns&Sup 5.4 6.0 8.4 10.9

Table 6. Accuracy gain (%) in unaligned ModelNet40 over super-
vised learned features on ModelNet40. The compared features are
obtained by learning Primitive3D with various methods.

namely, ωmax increases, the accuracy margin of our method
over the baseline continues to improve. Our feature learning
method, in particular, obtains an accuracy of 67.6 % on the
fully unaligned dataset (ωmax = π), while the supervised
baseline only achieves 56.7%.

C.3. Part Segmentation

We perform pretraining on Primitive3D and fine-tuning
on ShapeNetPart for the object part segmentation task. As
seen in the results of Table 7, the performance of our pre-
training method can beat either the train-from-scratch or the
unsupervised counterparts. This illustrates that our pretrain-
ing strategy is successful not only for instance-level tasks
but also for point-level feature learning, as the objective of
our supervised segmentation task is to learn the local geom-
etry information of objects.

D. Limitations of Our Work
Our work mainly focuses on constructing a larege-scale

3D object dataset with low cost. However, we restrict our
discussion to only 3D object understanding, whereas other
scene-level 3D tasks such as semantic scene segmentation
are not covered in this study. It will be interesting in fu-
ture work to construct random scenes consisting of multiple
generated objects to serve a broader range of applications.

E. Visualization of Dataset
In Figure 7, we visualize some selected examples in

Primitive3D with semantic annotations (primitive type la-
bel) and instance annotations (primitive instance label).

References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018. 8

[2] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and
Mathieu Desbrun. Variational tetrahedral meshing. In ACM
SIGGRAPH 2005 Papers, pages 617–625. 2005. 2

[3] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The
power crust. In Proceedings of the sixth ACM symposium on
Solid modeling and applications, pages 249–266, 2001. 2

[4] Suzanne Fox Buchele. Three-dimensional binary space par-
titioning tree and constructive solid geometry tree construc-
tion from algebraic boundary representations. The Univer-
sity of Texas at Austin, 1999. 2

[5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 4

[6] Hyeong In Choi, Sung Woo Choi, and Hwan Pyo Moon.
Mathematical theory of medial axis transform. pacific jour-
nal of mathematics, 181(1):57–88, 1997. 2

[7] Xiang Gao, Wei Hu, and Guo-Jun Qi. Graphter: Unsuper-
vised learning of graph transformation equivariant represen-
tations via auto-encoding node-wise transformations. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7163–7172, 2020. 4, 6, 8

[8] Zhizhong Han, Xiyang Wang, Yu-Shen Liu, and Matthias
Zwicker. Multi-angle point cloud-vae: Unsupervised fea-
ture learning for 3d point clouds from multiple angles by
joint self-reconstruction and half-to-half prediction. In 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10441–10450. IEEE, 2019. 8

[9] Heisuke Hironaka. Triangulations of algebraic sets. In Al-
gebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Hum-
boldt State Univ., Arcata, Calif., 1974), volume 29, pages
165–185, 1975. 2

[10] GJ Jense. Voxel-based methods for cad. Computer-aided
design, 21(8):528–533, 1989. 2

[11] Nilanjana Karmakar, Arindam Biswas, Partha Bhowmick,
and Bhargab B Bhattacharya. A combinatorial algorithm to
construct 3d isothetic covers. International Journal of Com-
puter Mathematics, 90(8):1571–1606, 2013. 2

[12] Sai Huen Lo. Volume discretization into tetrahedra—ii. 3d
triangulation by advancing front approach. Computers &
Structures, 39(5):501–511, 1991. 2

[13] Edwin E Moise. Affine structures in 3-manifolds: V. the
triangulation theorem and hauptvermutung. Annals of math-
ematics, pages 96–114, 1952. 2

[14] Edwin E Moise. Geometric topology in dimensions 2 and 3.
1977. 2

[15] Quang-Hieu Pham, Thanh Nguyen, Binh-Son Hua, Gemma
Roig, and Sai-Kit Yeung. Jsis3d: Joint semantic-instance
segmentation of 3d point clouds with multi-task pointwise
networks and multi-value conditional random fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8827–8836, 2019. 3

[16] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, pages 652–660, 2017. 8

[17] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, 2017. 8

[18] Aristides Requicha and Robert Tilove. Mathematical foun-
dations of constructive solid geometry: General topology of
closed regular sets. 1978. 2

[19] Jonathan Sauder and Bjarne Sievers. Self-supervised deep
learning on point clouds by reconstructing space. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, NeurIPS, volume 32, 2019. 4, 6

[20] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li,
David Rosenblum, and Andrew Lim. Digraph inception con-
volutional networks. Advances in neural information pro-
cessing systems, 33:17907–17918, 2020. 3

[21] Dangxiao Wang, Xin Zhang, Yuru Zhang, and Jing Xiao.
Configuration-based optimization for six degree-of-freedom
haptic rendering for fine manipulation. IEEE transactions on
haptics, 6(2):167–180, 2012. 2

[22] Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and
Matt J Kusner. Unsupervised point cloud pre-training via
occlusion completion. In CVPR, 2021. 4, 6

[23] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and
Jiaya Jia. Associatively segmenting instances and semantics
in point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4096–
4105, 2019. 3

[24] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 3, 4, 8

[25] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
CVPR, pages 1912–1920, 2015. 4

[26] Li Xinke, Ding Henghui, Tong Zekun, Wu Yuwei, and
Yeow Meng Chee. Primitive3d: 3d object dataset synthesis
from randomly assembled primitives, 2022. 1, 2, 4, 5

[27] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics (ToG), 35(6):1–12, 2016. 4

[28] Hui Zhang and Henghui Ding. Prototypical matching and
open set rejection for zero-shot semantic segmentation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 6974–6983, 2021. 3

Shapes
Supervised Unsupervised

PointNet [16] PointNet++ [17] DGCNN [24] LGAN [1] MAP-VAE [8] GraphTER [7] Ours
Aero 83.4 82.4 84.2 54.1 62.7 81.7 84.0
Bag 78.7 79.0 83.7 48.7 67.1 68.1 84.8
Cap 82.5 87.7 84.4 62.6 73.0 83.7 83.7
Car 74.9 77.3 77.1 43.2 58.5 74.6 77.8
Chair 89.6 90.8 90.9 68.4 77.1 88.1 91.1
Earphone 73.0 71.8 78.5 58.3 67.3 68.9 78.3
Guitar 91.5 91.0 91.5 74.3 84.8 90.6 91.5
Knife 85.9 85.9 87.3 68.4 77.1 86.6 88.2
Lamp 80.8 83.7 82.9 53.4 60.9 80.0 83.4
Laptop 95.3 95.3 96.0 82.6 90.8 95.6 95.8
Motor 65.2 71.6 67.8 18.6 35.8 56.3 65.2
Mug 93.0 94.1 93.3 75.1 87.7 90.0 93.8
Pistol 81.2 81.3 82.6 54.7 64.2 80.8 82.9
Rocket 57.9 58.7 59.7 37.2 45.0 55.2 57.9
Skateboard 72.8 76.4 75.5 46.7 60.4 70.7 75.2
Table 80.6 82.6 81.7 66.4 74.8 79.1 82.8
mean 83.7 85.1 85.0 57.0 68.0 81.9 85.3

Table 7. Detailed results on part segmentation task on ShapeNetPart.

Figure 7. Visualization of Primitve3D samples with various leaf number l

