
RAGO: Recurrent Graph Optimizer For Multiple Rotation Averaging
Supplementary Material

Heng Li1 Zhaopeng Cui2 Shuaicheng Liu4 Ping Tan1,3
1Simon Fraser University 2State Key Lab of CAD&CG, Zhejiang University 3Alibaba XR Lab

4University of Electronic Science and Technology of China
{lihengl,pingtan}@sfu.ca, zhpcui@zju.edu.cn, liushuaicheng@uestc.edu.cn

To make our submission self-contained, the supple-
mentary material provides additional details about 1) Net-
work definition and rotation representation, 2) Training
and Testing, 3) Result details. The code is available at
github.com/sfu-gruvi-3dv/RAGO

1. Network Details

1.1. The Number Of Feature Channels

As we mentioned in the main paper, we use Orth6D [9]
as the default rotation representation in our RAGO. For
the input rotation R3×3 ∈ 𝑆𝑂 (3), we flatten it to R1×9 as
the input of the neural networks. Thus the input size of
the nodes is {R𝑢} = (|V, 9|), and the input of the edges
is {R𝑣} = (|E |, 9). The size of cost feature is {C𝑢} =

{|V|, 48}, {C𝑢𝑣} = (|E |, 48). The feature and hidden state
of the view-graph have the same size as the cost feature.
The output ΔR1×6 in 6D space is then mapped to the ΔR3×3
on 3D rotation space 𝑆𝑂 (3).

1.2. The Structure of MLP

We use the Multi-layered Linear Perception (MLP) in
the Edge Convolution and the Graph Updater. For the MLP
Φnode and Φedge in Edge Convolution, we use MLP with 3
fully connected (FC) layers without dropout layers, while
the inner feature channel is fixed to 48. We use the MLP
with 6 FC layers in the graph updater.

1.3. The Structure of MPNN

In this section, we provide additional details about the
definition of the neural networks used in RAGO. The ar-
chitecture of Edge Conv as shown in Figure 1. As shown
in Figure 2, we use the Message Passing Neural Network
(MPNN) with 1 Edge Convolution layer to extract features
from the input view-graph. The MPNN used for initializing
the hidden state has the same structure with MPNN Θfeat
while following a tanh activation function to map the out-
put to (−1, 1). Notice that in the MPNN Θcost, the output

𝐟𝑤𝑢𝐟𝑥𝑣

𝐟𝑢𝑣

𝐟𝑤𝑥 𝐟𝑤

𝐟𝑢𝐟𝑣

𝐟𝑥

𝐟𝑢𝑣
𝐟𝑢𝐟𝑣

𝐟𝑢 𝐟𝑣 𝐟𝑢𝑣 MLPΦedge

𝐟𝑢𝑣
′

𝐟𝑢𝐟𝑣

𝐟𝑤𝑢
′

𝐟𝑥𝑣
′

𝐟𝑢𝑣
′

𝐟𝑤𝑥
′ 𝐟𝑤

𝐟𝑢𝐟𝑣

𝐟𝑥

MLPΦnode

𝐟𝑢
𝐟𝑤𝑢
′ 𝐟𝑢𝑣

′

𝑚𝑒𝑎𝑛(𝐟𝑢𝑘
′ , 𝑘 ∈ 𝒩𝑢)

𝐟𝑢
′

𝐟𝑤𝑢
′

𝐟𝑢𝑣
′

edge update node update

𝐟𝑤𝑢
′

𝐟𝑥𝑣
′

𝐟𝑢𝑣
′

𝐟𝑤𝑥
′ 𝐟𝑤

𝐟𝑢𝐟𝑣

𝐟𝑥 𝐟𝑤𝑢
′

𝐟𝑥𝑣
′

𝐟𝑢𝑣
′

𝐟𝑤𝑥
′ 𝐟𝑤

′

𝐟𝑢
′𝐟𝑣

′

𝐟𝑥
′

Figure 1. The structure of an Edge Convolution. An Edge Convo-
lution update each edge feature with a weight shared MLP Φedge.
Then, the node features are updated by passing the updated edge
features from the neighbors to the node MLP Φnode.

MPNN Θfeat

Edge Conv

Input: Node(9), Edge(9)

Output: Node(48), Edge(48)

MPNN Θstate

Edge Conv

Input: Node(9), Edge(9)

Output: Node(48), Edge(48)

MPNN Θcost

Edge Conv #1

Input: Node(9), Edge(9)

Output: Node(48), Edge(48)

Edge Conv #2

Input: Node(48), Edge(48)

Output: Node(48), Edge(48)

Tanh

Edge Conv #3

Input: Node(48), Edge(48)

Output: Node(48), Edge(48)

Figure 2. The structure of the MPNN we used in RAGO.

cost features have the information from its 3-order neigh-
bors because it is updated by Edge Convolution 3 times.

2. Training Details

2.1. Edge Random Drop

To avoid overfitting on the real-world dataset, we ran-
domly drop 20% edge from the view-graph. We first ran-
domly generate a spanning tree from the view-graph, while
the edge on the spanning tree will keep active to make sure
the whole view-graph is connected. Then, we uniformly

1

https://github.com/sfu-gruvi-3dv/RAGO

drop 20% edges from the view-graph. During inference, all
of the edges are active.

2.2. Evaluation Cost on the Real-world Datasets

Due to the limitation of the training samples on the real-
world datasets, RAGO may be overfitted on the training set.
We could evaluate RAGO on the validation set on the syn-
thetic dataset and keep the parameters with the best perfor-
mance for testing. However, there is only 1 view-graph for
testing on the real-world datasets due to the leave-one-out
manner. Thus we should define an evaluation cost on the
testing view-graph to save the model with the best perfor-
mance to avoid overfitting. Inspired by the MRA objective
function, We can define an evaluation cost based on the in-
put relative orientations, the output rectified relative orien-
tations and the estimated global camera orientations. The
rectified relative orientations are used as the robust func-
tion. The parameters of the model minimize the following
evaluation cost is saved for testing:∑︁

(𝑢,𝑣) ∈E
𝜌(𝑑 (R𝑡

𝑢𝑣 ,R𝑢𝑣))2𝑑 (R𝑡
𝑢R𝑡⊤

𝑣 ,R𝑢𝑣), (1)

where 𝑑 is the angular distance of two rotations and the
robust function is 𝜌(𝑥) = relu(20 − 𝑥).

2.3. Global Camera Initialization

Due to the limitation of the training samples on the real-
world datasets (14 for 1DSfM, 48 for YFCC100), we use
CleanNet-SPT initialization [5] to make the training eas-
ier. The CleanNet-SPT initialization uses an MPNN with 3
Edge Convolution layers to predict a probability of an edge,
which implies an outlier or not. Then the node with the most
neighbors would be chosen as the root node to propagate
an initialization through the minimum spanning tree. The
strategy of root node selection is heuristic in NeuRoRA [5]
because the error on edge will propagate through the span-
ning tree. Thus NeuRoRA empirically selects the node with
the most neighbors as the root node to make the depth from
the root to the leaf as small as possible. A random root node
will produce an inferior result. Notice that RAGO does not
suffer from the gauge freedom problem. Thus we randomly
select a node as the root node.

To be noted that, since the scene Trafalgar in 1DSfM
is very complex and noisy, we need a better initialization
than all the other dataset. As a result, for Trafalgar,
we take a cascaded framework in which two RAGO net-
works are used: one for initialization and the other one for
refinement. The first RAGO utilizes CleanNet-SPT for ini-
tialization, and then we use the discrepancy between the
output global camera orientations from the first RAGO and
the input relative orientations as the weight to generate a
minimum spanning tree. The global camera orientations

0 5 10 15 20 25 30
Iteration times

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

M
ea

n
Er

ro
r i

n
De

gr
ee

Weiszfeld
Arrigoni
Wang
Chatterjee
NeuRoRA
RAGO*

Figure 3. The average mean error of RAGO on the synthetic
dataset compared with various MRA methods [1–3,5,6]. The opti-
mized results of the previous approaches are visualized as the dash
lines. The vertical axis represents the average mean angular error,
while the horizontal axis shows the number of iterations.

0 5 10 15 20 25 30
Iteration times

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

M
ed

ia
n

Er
ro

r i
n

De
gr

ee

Weiszfeld
Arrigoni
Wang
Chatterjee
NeuRoRA
RAGO*

Figure 4. The average median error of RAGO on the synthetic
dataset compared with various MRA methods [1–3, 5, 6]. The op-
timized results of the previous approaches are visualized as the
dash lines. The vertical axis represents the average mean angular
error, while the horizontal axis shows the number of iterations.

propagated through the spanning-tree are fed to the second
RAGO to generate the final result.

3. Dataset Detail

3.1. Synthetic Dataset

We use the same configurations and script [5] to gener-
ate the synthetic dataset. Because the author does not report
the random seed they used to create the dataset, we use the
current time as the random seed. We test RAGO and Neu-
RoRA [5] on the same synthetic dataset and cite the results
of other methods from [5]. The visualization of the average
of mean and median angular error for comparison during
optimization as shown on Figure 3 and Figure 4. We fix
rectified relative orientations after 10 iterations.

3.2. Real-World Dataset

1DSfM: We cite the result of other methods on 1DSfM [7]
from MSP [8]. Notice the MSP uses additional input. Thus
we underline the second performance for comparison. We
fix rectified relative orientations after 10 iterations.
YFCC100: We cite the result of other methods on
YFCC100 [4] from MSP [8]. We use the reconstructed
camera pose provided by the author as the ground truth.
The relative orientations are provided by [8] computed from
COLMAP. We fix rectified relative orientations after 10 it-
erations.

3.3. Robust Check

We generate several different synthetic datasets for ro-
bustness check. We use the following configuration as the
default setting: the number of the nodes |V| ∈ [550, 600],
the percentage of the edge |E | ∈ [25%, 35%], the er-
ror of the edge 𝜎 ∈ [10◦, 20◦] and the percentage of the
outliers 𝑜 ∈ [10%, 20%]. This configuration is labeled
as (600, 30%, 15◦, 15%). To check the generalization of
RAGO on the view-graph with different number of nodes,
we generate two synthetic datasets where |V| ∈ [250, 350]
labeled as 300, and |V| ∈ [1400, 1600] labeled as 1500.
For the evaluation of robustness with different |E |, we
change |E | to [2%, 4%] and [55%, 65%], labeled as 3%
and 60%, respectively. The 𝜎 is changed to [4◦, 6◦] and
[50◦, 60◦], marked as 5◦ and 55◦ to evaluate the perfor-
mance of RAGO with different levels of noise. Finally, we
generate two synthetic datasets with different percentages
of outliers, [2%, 4%] and [55%, 65%], marked as 3% and
60% to check the influence of the outliers.

4. Limitation
There are some limitations for RAGO. Firstly, RAGO is

a learning-to-optimize optimizer, which needs a lot of view-
graphs for training. The real-world datasets only have 16
view-graphs on 1DSfM and 72 view-graphs on YFCC100,
leading to deploy a robust initialization for a better per-
formance. Notice that the error will accumulate through
the edge during camera initialization. The previous meth-
ods usually require a heuristic strategy to select a root node
to make the depth of the spanning tree as small as possi-
ble. However, RAGO only requires a good spanning tree.
This property makes RAGO has low sensitivity on initial-
ization. Secondly, RAGO is trained under a supervised
manner, which needs the view-graph with ground-truth for
training. However, the ground-truth camera orientations of
the real-world view-graph are hard to obtain.

References
[1] F. Arrigoni, B. Rossi, P. Fragneto, and A. Fusiello. Robust

synchronization in so(3) and se(3) via low-rank and sparse

matrix decomposition. Comput. Vis. and Image Underst.,
174:95–113, 2018. 2

[2] Avishek Chatterjee and Venu Madhav Govindu. Efficient and
robust large-scale rotation averaging. Int. Conf. Comput. Vis.,
2013. 2

[3] Richard Hartley, Khurrum Aftab, and Jochen Trumpf. L1 ro-
tation averaging using the weiszfeld algorithm. IEEE Conf.
Comput. Vis. Pattern Recog., 2011. 2

[4] Jared Heinly, Johannes Lutz Schönberger, Enrique Dunn, and
Jan-Michael Frahm. Reconstructing the World* in Six Days
*(As Captured by the Yahoo 100 Million Image Dataset).
IEEE Conf. Comput. Vis. Pattern Recog., 2015. 3

[5] Pulak Purkait, Tat-Jun Chin, and Ian Reid. Neurora: Neural
robust rotation averaging. Eur. Conf. Comput. Vis., 2020. 2

[6] Lanhui Wang and Amit Singer. Exact and stable recovery of
rotations for robust synchronization. Information and Infer-
ence: A Journal of the IMA, 2(2):145–193, 2013. 2

[7] Kyle Wilson and Noah Snavely. Robust global translations
with 1dsfm. Eur. Conf. Comput. Vis., 2014. 3

[8] Luwei Yang, Heng Li, Jamal Ahmed Rahim, Zhaopeng Cui,
and Ping Tan. End-to-end rotation averaging with multi-
source propagation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 11774–11783, June 2021. 3

[9] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural net-
works. IEEE Conf. Comput. Vis. Pattern Recog., 2019. 1

	. Network Details
	. The Number Of Feature Channels
	. The Structure of MLP
	. The Structure of MPNN

	. Training Details
	. Edge Random Drop
	. Evaluation Cost on the Real-world Datasets
	. Global Camera Initialization

	. Dataset Detail
	. Synthetic Dataset
	. Real-World Dataset
	. Robust Check

	. Limitation

