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To make our submission self-contained, the supple-
mentary material provides additional details about 1) Net-
work definition and rotation representation, 2) Training
and Testing, 3) Result details. The code is available at
github.com/sfu-gruvi-3dv/RAGO

1. Network Details
1.1. The Number Of Feature Channels

As we mentioned in the main paper, we use Orth6D [9]
as the default rotation representation in our RAGO. For
the input rotation R3x3 € SO(3), we flatten it to Rjxg as
the input of the neural networks. Thus the input size of
the nodes is {R,} = (|V,9]), and the input of the edges
is {R,} = (]&[,9). The size of cost feature is {C,} =
{|V|,48},{C.,} = (|&E],48). The feature and hidden state
of the view-graph have the same size as the cost feature.
The output AR|«¢ in 6D space is then mapped to the AR3x3
on 3D rotation space SO (3).

1.2. The Structure of MLP

We use the Multi-layered Linear Perception (MLP) in
the Edge Convolution and the Graph Updater. For the MLP
®ode and Deqge in Edge Convolution, we use MLP with 3
fully connected (FC) layers without dropout layers, while
the inner feature channel is fixed to 48. We use the MLP
with 6 FC layers in the graph updater.

1.3. The Structure of MPNN

In this section, we provide additional details about the
definition of the neural networks used in RAGO. The ar-
chitecture of Edge Conv as shown in Figure 1. As shown
in Figure 2, we use the Message Passing Neural Network
(MPNN) with 1 Edge Convolution layer to extract features
from the input view-graph. The MPNN used for initializing
the hidden state has the same structure with MPNN Ofeyq
while following a tanh activation function to map the out-
put to (—1,1). Notice that in the MPNN O, the output
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Figure 1. The structure of an Edge Convolution. An Edge Convo-
lution update each edge feature with a weight shared MLP ®¢gge.
Then, the node features are updated by passing the updated edge
features from the neighbors to the node MLP @, 4.
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Figure 2. The structure of the MPNN we used in RAGO.

cost features have the information from its 3-order neigh-
bors because it is updated by Edge Convolution 3 times.

2. Training Details
2.1. Edge Random Drop

To avoid overfitting on the real-world dataset, we ran-
domly drop 20% edge from the view-graph. We first ran-
domly generate a spanning tree from the view-graph, while
the edge on the spanning tree will keep active to make sure
the whole view-graph is connected. Then, we uniformly


https://github.com/sfu-gruvi-3dv/RAGO

drop 20% edges from the view-graph. During inference, all
of the edges are active.

2.2. Evaluation Cost on the Real-world Datasets

Due to the limitation of the training samples on the real-
world datasets, RAGO may be overfitted on the training set.
We could evaluate RAGO on the validation set on the syn-
thetic dataset and keep the parameters with the best perfor-
mance for testing. However, there is only 1 view-graph for
testing on the real-world datasets due to the leave-one-out
manner. Thus we should define an evaluation cost on the
testing view-graph to save the model with the best perfor-
mance to avoid overfitting. Inspired by the MRA objective
function, We can define an evaluation cost based on the in-
put relative orientations, the output rectified relative orien-
tations and the estimated global camera orientations. The
rectified relative orientations are used as the robust func-
tion. The parameters of the model minimize the following
evaluation cost is saved for testing:
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where d is the angular distance of two rotations and the
robust function is p(x) = relu(20 — x).

2.3. Global Camera Initialization

Due to the limitation of the training samples on the real-
world datasets (14 for IDSfM, 48 for YFCC100), we use
CleanNet-SPT initialization [5] to make the training eas-
ier. The CleanNet-SPT initialization uses an MPNN with 3
Edge Convolution layers to predict a probability of an edge,
which implies an outlier or not. Then the node with the most
neighbors would be chosen as the root node to propagate
an initialization through the minimum spanning tree. The
strategy of root node selection is heuristic in NeuRoRA [5]
because the error on edge will propagate through the span-
ning tree. Thus NeuRoRA empirically selects the node with
the most neighbors as the root node to make the depth from
the root to the leaf as small as possible. A random root node
will produce an inferior result. Notice that RAGO does not
suffer from the gauge freedom problem. Thus we randomly
select a node as the root node.

To be noted that, since the scene Trafalgar in IDSfM
is very complex and noisy, we need a better initialization
than all the other dataset. As a result, for Trafalgar,
we take a cascaded framework in which two RAGO net-
works are used: one for initialization and the other one for
refinement. The first RAGO utilizes CleanNet-SPT for ini-
tialization, and then we use the discrepancy between the
output global camera orientations from the first RAGO and
the input relative orientations as the weight to generate a
minimum spanning tree. The global camera orientations
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Figure 3. The average mean error of RAGO on the synthetic
dataset compared with various MRA methods [1-3,5,6]. The opti-
mized results of the previous approaches are visualized as the dash
lines. The vertical axis represents the average mean angular error,
while the horizontal axis shows the number of iterations.
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Figure 4. The average median error of RAGO on the synthetic
dataset compared with various MRA methods [1-3, 5,6]. The op-
timized results of the previous approaches are visualized as the
dash lines. The vertical axis represents the average mean angular
error, while the horizontal axis shows the number of iterations.

propagated through the spanning-tree are fed to the second
RAGO to generate the final result.

3. Dataset Detail
3.1. Synthetic Dataset

We use the same configurations and script [5] to gener-
ate the synthetic dataset. Because the author does not report
the random seed they used to create the dataset, we use the
current time as the random seed. We test RAGO and Neu-
RoRA [5] on the same synthetic dataset and cite the results
of other methods from [5]. The visualization of the average
of mean and median angular error for comparison during
optimization as shown on Figure 3 and Figure 4. We fix
rectified relative orientations after 10 iterations.



3.2. Real-World Dataset

IDSfM: We cite the result of other methods on /DSfM [7]
from MSP [8]. Notice the MSP uses additional input. Thus
we underline the second performance for comparison. We
fix rectified relative orientations after 10 iterations.
YFCC100: We cite the result of other methods on
YFCCI00 [4] from MSP [8]. We use the reconstructed
camera pose provided by the author as the ground truth.
The relative orientations are provided by [8] computed from
COLMAP. We fix rectified relative orientations after 10 it-
erations.

3.3. Robust Check

We generate several different synthetic datasets for ro-
bustness check. We use the following configuration as the
default setting: the number of the nodes |V| € [550, 600],
the percentage of the edge |E| € [25%,35%], the er-
ror of the edge oo € [10°,20°] and the percentage of the
outliers o € [10%,20%]. This configuration is labeled
as (600, 30%, 15°,15%). To check the generalization of
RAGO on the view-graph with different number of nodes,
we generate two synthetic datasets where |'V| € [250, 350]
labeled as 300, and |V| € [1400, 1600] labeled as 1500.
For the evaluation of robustness with different |E|, we
change |&]| to [2%,4%] and [55%,65%], labeled as 3%
and 60%, respectively. The o is changed to [4°,6°] and
[50°,60°], marked as 5° and 55° to evaluate the perfor-
mance of RAGO with different levels of noise. Finally, we
generate two synthetic datasets with different percentages
of outliers, [2%,4%)] and [55%, 65%], marked as 3% and
60% to check the influence of the outliers.

4. Limitation

There are some limitations for RAGO. Firstly, RAGO is
a learning-to-optimize optimizer, which needs a lot of view-
graphs for training. The real-world datasets only have 16
view-graphs on /DSfM and 72 view-graphs on YFCC100,
leading to deploy a robust initialization for a better per-
formance. Notice that the error will accumulate through
the edge during camera initialization. The previous meth-
ods usually require a heuristic strategy to select a root node
to make the depth of the spanning tree as small as possi-
ble. However, RAGO only requires a good spanning tree.
This property makes RAGO has low sensitivity on initial-
ization. Secondly, RAGO is trained under a supervised
manner, which needs the view-graph with ground-truth for
training. However, the ground-truth camera orientations of
the real-world view-graph are hard to obtain.
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