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Abstract

In this supplementary material, we provide more experi-
mental results about the R(Det)?, including: ablation study
on the node and tree prediction accuracy, the detailed de-
sign for generating routing probabilities and masks, and
more visualization results. We also add the analysis in this
supplementary material. The limitation as well as social
impacts are also included in this supplementary material.

1. Supplementary experiments

We present more experiments on R(Det)?. The imple-
mentation details are as follows:

Datasets. We evaluate R(Det)? on the large-scale bench-
mark MS COCO 2017 [5]. Following common practice,
we train detectors on fraining split with ~115k images and
evaluate them on val split with 5k images. The standard
mean average precision (AP) across different IoU thresh-
olds is used as the evaluation metric.

Training details. We implement the R(Det)? as the
plug-in head and integrate it into existing detectors. Our im-
plementation is based on the popular mmdetection [2] plat-
form. If not specially noted, the R(Det)? serves for the deci-
sion in R-CNN of two-stage detectors, as Faster R-CNN [&].
We train the models with ResNet-50 [3] backbones with 8
Nvidia TitanX GPUs. The learning rate is set to 0.02 and
the weight decay is le-4, with momentum 0.9. The models
for ablation studies are trained with the standard 1 x config-
uration. No data augmentation is used except for standard
horizontal image flipping.

Inference details. It is noteworthy that the randomized
decision routing is only performed in training phase. In
inference, we perform on the single image scale with the
shorter side normalized to 800 pixels and longer side less
than 1333 pixels.

1.1. Ablation study

Comparison of node and tree decision performance.
To illustrate how R(Det)? works, we present the detailed
performance of separate node decision and the overall tree
decision in Table 1. Compared to the baseline, we find that

AP APsy AP;; APs APy APp
Base. 374 581 404 212 41.0 48.1
CE loss for cls and Smooth-L, loss for bbox

cls left 39.1 584 429 21.6 428 528
right 394 602 424 229 429 515

bbox left 40.1 60.9 433 231 436 532
right 402 609 435 232 437 530

all 404 612 441 238 437 53.0

task  node

CE loss for cls and IoU loss for bbox

cls left 393 579 432 215 427 533
right 39.6 600 429 233 43.1 519

bbox left 40.2 60.6 44.1 230 437 534
right 402 60.6 434 23.0 43.6 53.6

all 410 612 448 24.6 44.1 537

Focal loss for cls and IoU loss for bbox
cls left 409 61.1 444 243 442 538

right 409 61.0 444 242 443 53.6
bbox left 40.5 609 438 239 439 53.1
right 40.6 61.0 440 237 440 532

all 41.0 61.1 445 243 443 537

Table 1. Comparison of node decision and overall tree deci-
sion with different combination of loss functions. The base-
line model is Faster R-CNN with ResNet-50 as the backbone. CE
indicates the cross-entropy loss attached with Softmax activation.
Focal indicates the original focal loss [4]. IoU indicates the loss
computed by the negative-log of intersection-over-union [9].

the single-node prediction is also improved. That is mainly
because the feature representative learning is enhanced and
features are learned in a more sufficient way with the pro-
posed randomized decision routing in training phase. De-
spite this, further performance gain can be achieved in the
testing phase, with the help of fusing predictions from mul-
tiple nodes. When we apply the cross-entropy for classi-



Ymin Ymaz AP APsg  APrs APs APy APp

U(0.1,0.3) U(0.9,1.1) 409 612 445 239 442 537
U0.1,0.3)  U(0.3,0.7) 405  61.0 440 238 440 = 525
U0.1,0.3)  U(14,1.6) 408  61.1 443 242 442 535
U0.1,0.3)  U(1.9,2.1) 404 606 440 234 439 537
U(0,0.1) U0.9,1.1) 404 602 442 231 437 533
U0.3,05)  U(0.9,1.1) 409 610 442 236 442 537
U(0.5,0.7)  U(0.9,1.1) 404 609 437 232 437 535

Table 2. Ablation study on the setting of 7,445 Ymin in selective loss for randomzied decision routing. For this experiment, the
R(Det)? is equipped into Faster R-CNN with ResNet-50 backbone.

fication and Smooth-L; loss for the bounding box (bbox)
regression, the overall achieved detection AP is 40.4% and
APsg is 61.2%. The single-node detection with the sole
left yields 39.1% AP, 58.4% APsy, 42.9% AP;5. Mean-
while, the detection with the right node achieves 39.4%
AP, 60.2% APsy, 42.2% APr5. By comparing the left
and right nodes, we find that one node performs better on
the detection accuracy with moderate IoU (>0.5) while the
other node performs better on the detection with higher loU
(>0.75). This divergent decision leads to further improve-
ment on the overall decision of the whole tree. When we
use the IoU loss (native implementation in mmdetection [2],
which is computed as the negative-log of intersection-over-
union), the achieved overall AP is 41.0%. The bbox re-
gression with left and right node yields the detection AP of
40.2%. The multinode regression brings 0.8% of AP im-
provement in testing phase. When Focal loss [4] is applied,
the detection AP of single-node classification is 40.9%,
which is slightly lower than the overall detection AP. It
can be inferred from the table that the Cross-entropy loss
and IoU loss are prone to generate more divergent predic-
tions, thus the improvement on the overall detection is more
significant. A possible guess is that the Cross-entropy loss
(Softmax activation) and IoU loss are measured with the
whole output vector. Less restrictions are imposed on the
single component in the prediction vector and more diver-
gence is encouraged for different nodes.

Setting of ~ in selective loss. In Section 3 of the main
paper, we introduce selective loss to reduce the relevance
of different nodes. We set a higher weight ,,,4, for the
selected node and a lower weight ,,;, for the remaining
node. We sample V,in, Ymaz from uniform distributions.
In default, Ymin ™~ U(O].,O?)), Ymaz ™~ U(09, 11) We
further present the ablation study on the setting of v,in,
Ymaz in Table 2. When 4,45, is sampled from U(0.1,0.3),
Ymaz Sampling around 1 would lead to higher detection
AP. Increasing or decreasing 7,4, would cause 0.4~0.5
AP reduction. When 7,4, is sampled from U(0.9,1.1),
Ymin Sampling around 0.1~0.5 would yield better perfor-

mance. Since the selective loss is mainly used to enlarge
the decision divergence of different nodes, we need to en-
sure the moderate learning of separate nodes and diverse
learning among multiple nodes.

Effects on trees number. In traditional machine learn-
ing, a natural way to improve the prediction accuracy of de-
cision is to learn multiple parallel decision trees and fuse the
prediction together, just as Random Forest [1]. Inspired by
this, we exploit the effects on the number of parallel trees in
R(Det)?. The detection accuracy of R(Det)?-M is presented
in Table 3. The detection AP is highest with 1 tree and 2
nodes, yet decreases along with the number of trees. It in-
dicates that simply applying multi-node prediction with no
consideration of node difference would hamper the perfor-
mance. This experiment highlights the importance of intro-
ducing divergence into node training.

#Trees #Nodes AP AP50 AP75 APS APM APL

1 2 40.5 609 439 239 438 53.1
4 403 604 438 235 436 524
8 40.1 604 434 230 437 519
16 40.1 60.1 435 233 433 522

e lE PN )

Table 3. Effects on number of trees.

1.2. Comparative study on module design

Design of routing probability branch. In Figure 3 of
the main paper, we note that the implementation of R(Det)?
requires a branch to generate the routing probabilities. In
contrast to the original feature dimension (commonly 1024)
for generating prediction values, the routing probability
branch only needs to generate the scalar probability. There-
fore, we design a much narrower branch for saving the com-
putational burden. For this branch, we design three types of
modules to generate the routing probabilities, as follows:

e 2fc: 2 fully-connected layers with dimension d;

e 2conv: 2 convolution layers with channels number c;



routing-prob.setting AP APy  AP;s  APg APy APy #FLOPs  #params

2fc d = 256 40.4 60.8 43.7 23.4 43.8 52.8 133G 20.95M
d=128 40.2 60.4 43.5 23.5 43.7 52.0 131G 19.30M

d =064 40.3 60.6 43.8 23.5 44.0 52.5 130G 18.48M

2cony c =256 40.2 60.6 43.5 23.3 43.5 52.7 187G 18.90M
c=128 40.1 60.2 43.5 23.3 43.5 52.4 151G 18.14M

c=64 40.1 60.4 43.6 23.3 434 52.3 138G 17.87M

c=32 40.2 60.4 43.7 23.7 43.6 52.7 133G 17.76M

Icomvifc ¢=32,d=256 402 60.4 43.5 23.0 43.7 52.9 133G 18.15M
c=64,d =256  40.3 60.6 43.5 24.0 43.6 53.1 137G 18.63M

c=128,d =256 40.2 60.4 434 23.1 43.6 52.4 145G 19.56M

Table 4. Comparison of different designs for routing probability generation. The baseline model is Faster R-CNN with ResNet-50
backbone. We equip the R(Det)*-M for the investigation of routing probability branch design. The number of FLOPs is evaluated with

image size 800 x 1200.

routing-prob.  routing-mask AP APsy APy APs APy AP,  #FLOPs #params

setting setting

2fc cm = 16 403 60.6 438 235 440 525 130G 18.48M

d=064 Cm = 32 40.2 60.6 437 236 435 528 130G 20.12M
Ccm = 64 404  60.6 438 234 437 525 130G 23.41M

2fc cm = 16 404 60.8 437 234 438 528 133G 20.95M

d = 256 Cm = 32 40.2 60.3 435 237 437 526 133G 22.59M
Ccm = 64 40.5 609 439 239 438 531 133G 25.88M

Table 5. Comparison of different designs for routing mask generation. The baseline model is Faster R-CNN with ResNet-50 backbone.
We equip the R(Det)?>-M for the investigation of routing mask design. The number of FLOPs is evaluated with image size 800 x 1200.

e [convifc: 1 convolution layer with channels number ¢
and 1 fully-connected layer with dimension d.

We evaluate and compare the detection performance of
R(Det)?>-M of fixed mask generation with different designs
of routing probability branch. The detection accuracy and
model complexity of different routing probability genera-
tion is given in Table 4. Note that we only consider the
FLOPs and model parameters in the R-CNN head, with
1000 region proposals. In general, the detection accuracy
does not change too much with the parameter size of rout-
ing probability branch. The detection AP is highest with
the 2fc design of d = 256, with 40.4% of AP and 60.8% of
APsg. The parameter size of 2fc design is slightly higher,
while the 2conv mainly increases the computational burden.
The design of Iconvifc is a compromise to balance the pa-
rameter size and computational complexity. To consider the
detection performance and model complexity as a whole,
we commonly apply the 2fc design with d = 64 or d = 256.

Design of routing mask branch. In order to generate
the routing masks for different nodes, we construct the rout-
ing mask branch. The input for generating the route mask
is a single vector for each image. Commonly we use the

average features of all the involved Rols. The output of
fully-connected layer is restricted to be equal to the multi-
plication of nodes number and feature output for decision
(typically 1024). That is, the output is also a vector with
N %1024, where N is the number of nodes. Although a sin-
gle fully-connected layer upon the single-vector is effective
to generate the route masks, it brings too many parameters.
To conquer this, we stack a convolution layer with c,,, chan-
nels for dimension reduction and a fully-connected layer to
balance the detection performance and computational com-
plexity. We present the detection accuracy as well as the
model complexity with changing c,, in Table 5. We eval-
vate the impact of c,, under 2 settings of routing proba-
bility branch. The detection accuracy is the highest when
¢ = 64. When routing probability is generated with 2fc
d = 256, the detection accuracy is 40.5% of AP and 43.9%
of AP 75.

Design of R(Det)?-Lite. As discussed in the main pa-
per, the model complexity of R(Det)? is caused by the ad-
ditional branches for routing probability, routing mask and
task-aware features. Since task-aware feature computation
is the main cause of computational complexity, we remove



the task-aware and only consider R(Det)?-M for the lite ver-
sion design. Based on the experiments in Table 4 and 5,
we develop R(Det)?-Lite with complexity-saving design of
routing probability branch (2fc d = 64) and routing mask
branch (Iconvifc ¢,, = 16). It achieves 40.3% AP with
nearly ignorable model complexity.

1.3. Performance with ViT backbones.

ViT (vision transformer) such as Swin [6] has attracted
much attention recently. Therefore, other than ResNet-50
and ResNet-101, we conduct experiments with swin trans-
former for comparative study. Our experiment is based
on the implementation of swin-transformer-detection ! with
cascade structure. Different from other detection methods,
the swin transformer based detection is based on AdamW
optimization [7] other than SGD. We follow the default op-
timization setting as swin-transformer-detection. The com-
parison of original decision head (4convifc with Syn Batch
normalization) and our R(Det)? is presented in Table 6.
With Swin-L as the backbone, the R(Det)? improves the 1x
(12 epochs) detection AP of single-scale testing to 43.9%.

Backbone AP APsy AP;s APs AP, APy
Swin-L 53.0 726 579 358 57.0 6338
+R(Det)> 539 734 587 380 58.0 69.9

Table 6. Detection accuracy of Swin transformer as the back-
bone.

2. Visualization and analysis

We present more comparative visualization study in this
supplementary material, as in Figure | and Figure 2. The
detected results by ResNet-101 based Faster R-CNN are
shown in the left column and those from the R(Det)? are
shown in the right column. Unlike Faster R-CNN, the confi-
dence output from the R(Det)? is lower. A large proportion
of over-confident detection results are avoided. Figure 1
shows that R(Det)? is effective to detect objects in complex
scenes, such as easily-confused background, low-resolution
ones. Figure 2 shows that R(Det)? is effective in reducing
the repeated detections, especially in cluttered scenes.

Two effects contribute to the performance improvement
of R(Det)?. First, by generating multiple node decisions,
the tree-like decision structure enables us to explore diverse
visual cues from different aspects. Moreover, the diver-
gent learning with randomized routing losses of R(Det)?
helps promote feature representation of deep neural net-
works. Especially, larger objects are with more visual cues

Uhttps://github.com/SwinTransformer/Swin-Transformer-Object-
Detection

and multi-node decision helps explore features from dif-
ferent aspects and alleviate the over-focus of single visual
patterns, leading to significant APy, improvement. It also
helps reduce repeated detections inside larger objects (Fig-
ure 2 of this supplementary material). Second, the routing
probabilities can be viewed as decision confidence, which is
intrinsic to model the confidence/uncertainty level of classi-
fiers/regressors. Further, smaller learning rates are assigned
with the less prior nodes in R(Det)?, which suppresses the
over-optimization. Compared to existing works relying on
single linear projection for decision, the extra modeling of
confidence and the slow-fast learning manner help reduce
the over-confident decisions. From the visualization we can
see that, the detected boxes with saturated (nearly 1) confi-
dence are largely suppressed by R(Det)?.

3. Limitation and Social Impacts

The proposed method combines decision trees into
black-box networks, which would provides the potential for
interpretable machine learning. Yet the learned models are
based on the statistics of training dataset, which might be
biased and bring negative social impacts.
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Figure 1. Comparison of detection results for the baseline Faster R-CNN and R(Det)? equipped one. The models are with ResNet-101
as the backbone and trained with COCO 115k-train. The example test images are from COCO 5k-val. The rectangles mark the detected
bounding boxes with attached category labels and confidences. The detection results of baseline model are presented in the left column
(39.3% AP) and those of R(Det)? are presented in the right column (42.5% AP).
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Figure 2. Comparison of detection results for the baseline Faster R-CNN and R(Det)? equipped one. The models are with ResNet-101
as the backbone and trained with COCO 115k-train. The example test images are from COCO 5k-val. The rectangles mark the detected
bounding boxes with attached category labels and confidences. The detection results of baseline model are presented in the left column
(39.3% AP) and those of R(Det)? are presented in the right column (42.5% AP).
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