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1. Details of Memory Bank Update with EMA
We summarize the EMA based methods first select pro-

posal embeddings and then merge the proposal embeddings

with the old memory bank in an EMA way. As shown in

Eq. 1 (note Eq. 1 is the process to pixel level), GCNet [5]

uses simple averaging (λ = 0.5 in Eq. 1). AFB-URR [6]

uses EMA (λ = 0 ∼ 1 in Eq. 1) when the new feature is

close to an existing one. And SwiftNet [9] uses the most

similar embedding implemented by argmax (λ = 0 in Eq.

1) when the pixel location is triggered.

kIE
t (p) = (1− λ)kQ(q) + λkIE

t−θ(p) (1)

2. Ablation Study
2.1. Weights of Loss Function

In our experiments, the overall loss function, which is

computed as follows:

Loss = LSeg + �[t = 3, 5]μLUG + γLMC . (2)

The default setting of the weights is μ = γ = 10, we fix

one item and change the other item to show the ablation of

the weights in Table 1.

Figure 1. An illustration of perturbations for the GT frame. From

left to right are the input image, GT, and perturbated GT.

Weight 0 5 10 15

LUG 82.9 83.8 84.2 83.6

LMC 83.5 83.7 84.2 83.9

Table 1. Ablation of weights of the loss function on the DAVIS

2017 validation set. We evaluate J&F for the different weights

of the unbiased guidance loss LUG and the mask consistency loss

LMC , when the weight of the other is fixed (LUG = LMC = 10
by default).

2.2. Perturbation Levels

As shown in Figure 1, we perform perturbation trans-

form such as the random dilation and eroding on the first

frame with different perturbation levels. We adopt intersec-

tion over union (IOU) between the perturbated mask and

the GT mask to indicate the perturbation levels. In our ex-

periments, our method generates a perturbated mask with

the perturbation level randomly sampled from an interval

[lower bound, 1]. We fix the weight of the mask consis-

tency loss LMC to 10 and show ablation of lower bound
in Table 2. Too high perturbation level (low IOU) makes

the training of the network more difficult, which is not con-

ducive to network convergence.

lower bound 0.55 0.65 0.75 0.85 0.95

J&F 82.2 82.7 83.6 84.2 83.2

Table 2. Ablation of the perturbation levels. We fix the weight of

the mask consistency loss LMC to 10.

2.3. Sampling Interval

On the validation set of DAVIS 2017 and YouTube-VOS

2019, Figure 2 shows ablation of sampling interval θ. We

fix the sampling interval θ = 3 on the DAVIS datasets and

achieve the new state-of-the-art performance. And we set

the sampling interval θ = 4 on YouTube-VOS 2019 to fit

the motion pattern on YouTube-VOS. We will extend the

adaptive mechanism of the update interval for SAM in fu-

ture work. As the sampling interval increases, the increase

rate of FPS on DAVIS 2017 becomes slower. The analysis
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of this phenomenon can be found in Sec. 2.4.
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Figure 2. Ablation of sampling interval θ on the validation set

of DAVIS 2017 and YouTube-VOS 2019. On DAVIS 2017, we

additionally annotate FPS of different sampling intervals.

2.4. Analysis of Inference Time

We find as the sampling interval increases, the increase

rate of FPS on DAVIS 2017 becomes slower. As shown in

Figure 3, we explore the average inference time of different

components of our method on the DAVIS 2017 validation

set. The main reason is the most time-consuming part is not

SAM but the matching operation and decoder.
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Figure 3. Ablation of average inference time of different compo-

nents on the DAVIS 2017 validation set.

2.5. Analysis of RDE

We have demonstrated the superiority of our recurrent

dynamic embedding (RDE) in experiments. While how to
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Figure 4. The value embedding of the DIY car processed by

PCA [8]. #n denotes the n-th frame. In the STM [7] pattern

memory bank of STCN [3], as the video length increases, the new

embedding of the DIY car is continuously concatenated into the

STM pattern memory bank, which inevitably introduces lots of

noise. Our recurrent dynamic embedding (RDE) originates the

embedding of the latest frame and the historical information (pre-

vious RDE) to support the most helpful information to the seg-

mentation of the query frame.

analyze the quality of embedding is not intuitive. Inspired

by [10], we employ PCA [8] to project the value embed-

ding of the STM pattern memory bank and RDE into RGB

space for visualization. For the DIY car in “soapbox”, as

the length of the video increases, the embedding of the STM

pattern memory bank gradually blurs. It is because a large

amount of information is introduced losslessly, which may

be not conducive to reading the most important information

for the network. Our RDE originates the embedding of the

latest frame and the historical information (previous RDE).

It is based on a weak Markovian assumption, which means

except for the previous RDE and the latest frame, the seg-

mentation of the query frame is independent of past states.

2.6. Enhancing Part of SAM

We show the ablation of the enhancing part of SAM

without the BL30K [2] pre-training. We utilize a simple

atrous spatial pyramid pooling (ASPP) [1] in the enhancing

part. Without atrous spatial pyramid pooling (ASPP) [1],

J&F drops 1.3% which verifies the importance of the en-

hancing part. We further evaluate to enrich the represen-

tation of the enhancing part by introducing several residual

blocks (ResBlock) [4]. We find adding more residual blocks



Ablation Settings J&F J F

Architecture

w/o enhancing part 82.9 79.8 86.0

w/ ASPP 84.2 80.8 87.5
+ResBlock × 1 83.5 80.4 86.6

+ResBlock × 2 83.2 79.8 86.6

+ResBlock × 3 82.6 79.6 85.6

Table 3. Ablation of the enchaining part of SAM without the

BL30K [2] pre-training.
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Figure 5. An illustration of the memory reading from our SAM

pattern memory bank. Constant K is 2 in our experiments owing

to the concatenation of previous RDE and the embedding of the

latest frame.

cannot improve the performance but drop. It indicates SAM

does not require a deep network structure.

3. Memory Reading Details

For the SAM pattern memory bank m at time t, we keep

target-agnostic key km
t ∈ R

N×Ck×H×W and target-specific

value vm
t ∈ R

N×O×Cv×H×W , where N denotes the size

of a batch, O denotes the total number of the objects and

H × W denotes the spatial size of the embeddings. First,

we flatten N×O to NO for the value vm
t to the efficient cal-

culation. As shown in Figure 5, we ignore the batch axis for

brevity. Given the query frame t, we read the information

from the SAM pattern memory bank as shown in Figure 5.

4. Inference Details

During the inference, the pseudo-code of our method is

in Algorithm 1. Every several frames (e.g., 3), RDE is up-

dated by SAM and old RDE is discarded. The whole pro-

cess is concise and extensible.

Algorithm 1 Inference on DAVIS, PyTorch-like

# frame size: H x W
# object number: C (including background)
# frame_range: the index list of frames except for

the first frame (N-1)
# prob: output tensor (C, N, 1, H, W)
# mem_every: update interval

# Obtain key, value of the first frame
first_k, first_v = ImageE(0)

# SAM initialization with the embeddings of the
first frame.

# 1. mem_gt for two repeated gt frame
# 2. mem_temp for the latest frame
# 3. mem_rde for SAM
mem_bank.initialize()

for i in frame_range:
# Extract key (qk16), value (qv16) and middle

features (qf16, qf8, qf4) for frame i
qk16, qv16, qf16, qf8, qf4 = ImageE(i)

# Segment the i-th frame with the SAM pattern
memory bank

out_mask = segment_with_query(mem_bank, qf8, qf4,
qk16, qv16)

# Aggregate like STM
prob[:,i] = aggregate(out_mask)

if (i % mem_every) == 0:
key_i = qk16

# Encode query frame i
value_i = MaskE(i, qf16, out_mask[1:])

# Concatenate previous RDE and the
embedding of the latest frame

mem_cross = cat(mem_rde, mem_temp)

# Recurrently use SAM
mem_cross = SAM(mem_cross)

# Update the SAM pattern memory bank
mem_rde.update(mem_cross)
# Update the temporary key and value
mem_temp.update([key_i, value_i])

5. Visualization Results

As shown in Figure 6 and 7, we show the qualitative re-

sults on DAVIS 2017 test set compared with STCN [3]. For

complex scenes and similar-looking instances, our method

has relatively fewer errors than STCN. Figure 8 and 9 show

qualitative results on YouTube-VOS 2019 validation set,

which also indicates the superiority of our method.
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Figure 6. Qualitative results of STCN [3] and our method on DAVIS 2017 test set. We mark errors with red dotted boxes for the best view.
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Figure 7. Qualitative results of STCN [3] and our method on DAVIS 2017 test set. We mark errors with red dotted boxes for the best view.
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Figure 8. Qualitative results of STCN [3] and our method on YouTube-VOS 2019. We mark errors with red dotted boxes for the best view.
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Figure 9. Qualitative results of STCN [3] and our method on YouTube-VOS 2019. We mark errors with red dotted boxes for the best view.
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