
ResSFL Supplementary Materials

Jingtao Li1, Adnan Siraj Rakin1, Xing Chen1, Zhezhi He2, Deliang Fan1, Chaitali Chakrabarti1

1 School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai

1{jingtao1, asrakin, xchen382, dfan, chaitali}@asu.edu; 2{zhezhi.he}@sjtu.edu.cn

1. Non-iid Performance
We test the ResSFL performance in non-i.i.d case using the same setting as in Table 6. We partition the dataset evenly to

10 clients, and each client has data from either the 10 class partition or 20 class partition or 50 class partition to create three

non-i.i.d. cases. As shown in the table below, accuracy performance of ResSFL does not differ much from the vanilla scheme

while ResSFL has a clear advantage of mitigating the inversion attack (demonstrated with higher MSE number). It is worth

noting that there is an accuracy degradation even for the 50-class case compared to i.i.d. data (68.5% accuracy). Drop due to

non-i.i.d data is a known problem that we plan to address in the near future.

10-class 20-class 50-class

Vanilla (Accuracy/MSE) 25.4/0.005 53.3/0.005 65.4/0.005
ResSFL (Accuracy/MSE) 28.4/0.042 51.6/0.043 63.9/0.047

2. Detailed Architecture
Detailed inversion model architectures for L0 and L3 are shown in Figure 1 (We omit L1, L2 because they are just L3 with

less number of ResBlocks). The architecture design is dependent on the size of intermediate activation. For an intermediate

activation of size [128, 128, 8, 8], L0 inversion model consists of 2 Conv2d layers, and 2 ConvTranspoose2d layers that are

necessary to upsample the 8x8 activation to 32x32. The L3 inversion model consists of 6 ResBlocks (BasicBlock in [2]) and

2 ConvTranspose2d layers.

Inversion_Model_L0(
(m): Sequential(
(0): Conv2d(128, 16, kernel_size=(3, 3), stride=(1, 1), 

padding=(1, 1))
(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, 

affine=True, track_running_stats=True)
(2): ReLU()
(3): ConvTranspose2d(16, 16, kernel_size=(3, 3), 

stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(4): BatchNorm2d(16, eps=1e-05, momentum=0.1, 

affine=True, track_running_stats=True)
(5): ReLU()
(6): ConvTranspose2d(16, 16, kernel_size=(3, 3), 

stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(7): BatchNorm2d(16, eps=1e-05, momentum=0.1, 

affine=True, track_running_stats=True)
(8): ReLU()
(9): Conv2d(16, 3, kernel_size=(3, 3), stride=(1, 1), 

padding=(1, 1))
(10): BatchNorm2d(3, eps=1e-05, momentum=0.1, 

affine=True, track_running_stats=True)
(11): Sigmoid()

)
)

Inversion_Model_L3(
(m): Sequential(
(0): ResBlock(128, 64, BN = True)
(1): ReLU()
(2): ResBlock(64, 64, BN = True)
(3): ReLU()
(4): ResBlock(64, 64, BN = True)
(5): ReLU()
(6): ResBlock(64, 64, BN = True)
(7): ReLU()
(8): ResBlock(64, 64, BN = True)
(9): ReLU()
(10): ConvTranspose2d(64, 64, kernel_size=(3, 3), 

stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(11): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True)
(12): ReLU()
(13): ConvTranspose2d(64, 64, kernel_size=(3, 3), 

stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(14): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True)
(15): ReLU()
(16): ResBlock(64, 3, BN = True)
(17): Sigmoid()

)
)

Figure 1. Detailed architecture information for L0 and L3 Inversion model.

1



3. Optimization-based MI attack
We discussed training-based MI attack mitigation in the paper. There exists another MI attack known as optimization-

based MI attack [1, 3], whose performance is not as strong. Optimization-based MI attack does not require an additional

dataset. The intuition is that if the intermediate activation of the real image is the same as the intermediate activation of

the fake image, the two images should look the same [3]. For each private image xpriv[i] with intermediate activation At[i]
(indexed by i), the optimization process is as follows: a fake image x∗

priv[i] is randomly initialized (i.e. using Gaussian) and

gets optimized:

x∗
priv[i] = argmin

x∗
priv [i]

MSE(Ci(x∗
priv[i]),At[i]) (1)

We follow the same experiment setting as the main paper. For the optimizer that is used to update the output image x∗
priv ,

we use Adam optimizer with 0.8 learning rate. On a VGG-11 model with cut-layer of 2 (without defense) on CIFAR-100

dataset, optimization-based MI attack achieves 0.009 MSE, which is worse than training-based MI attack, which achieves

0.005 MSE as provided in the main paper.

We test the optimization-based MI attack on a model that applies our proposed ResSFL, by using a MI-resistant VGG11-

cut2 model trained on CIFAR-10 dataset transfer to CIFAR-100 dataset. This is the model we demonstrate in the main paper

with λ = 0.3 and bottleneck layers of C8-S1. We show early epochs resistance performance in Figure 2; the resistance of

ResSFL starts with a very high value of 0.5 MSE at epoch 1, and gradually reduces to around 0.22 MSE at later epochs. In

summary, our method generalizes well to optimization-based MI attack, and performs consistently well (above 0.20 MSE)

during the SFL training process.

0

0.2

0.4

0.6

1 5 10 20 50 200

M
SE

Epoch

Without defense: 0.01 20 times higher

Figure 2. Resistance performance of the proposed ResSFL scheme against optimization-based MI attack. We achieve a consistently good

resistance of around 0.20 MSE during SFL training process, which is 20 times higher than the model without defense (shown by the red-

dashed line).

4. Justification on target MSE
In our work, we empirically set an MSE of 0.02 as our mitigation target. We provide visualizations for different MSE

of the reconstructed image. We see that when the MSE is even above 0.020, the blurring effect makes it impossible for

person identification. However, the target MSE 0.02 is highly task-specific and may not be suitable for other tasks (i.e. digit

identification).

MSE: 0.000 0.005 0.010 0.015 0.020 0.025

5. Other empirical evidence
In the table below, we provide more empirical results to demonstrate the ResSFL performance. We show (1) evidence

that models pre-trained on other datasets can transfer to CIFAR-100, and (2) evidence that resistance on an SVHN pretrained



model can transfer to other datasets. We observe that transfer accuracy depends on the domain. For example, CIFAR-10

(similar domain to CIFAR-100) achieves good accuracy while MNIST (different domain) can only achieve 60.2% accuracy

when transferring to CIFAR-100. Another factor towards successful resistance transfer is the difficulty factor (See “Transfer

Performance to Different Datasets” in the paper). The source dataset needs to be a more difficult task in building up the

resistance.

Target ⇐ ⇐ Source dataset
CIFAR-100 CIFAR-10 SVHN FaceScrub MNIST

Accuracy 67.5 64.9 65.0 60.2

MSE (L3) 0.050 0.053 0.048 0.031

Source ⇒ ⇒ Target dataset
SVHN CIFAR-100 FaceScrub CIFAR-10 MNIST

Accuracy 64.9 72.6 89.9 99.4

MSE (L3) 0.053 0.019 0.007 0.003

References
[1] Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 4829–4837, 2016. 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016. 1

[3] Zecheng He, Tianwei Zhang, and Ruby B Lee. Attacking and protecting data privacy in edge–cloud collaborative inference systems.

IEEE Internet of Things Journal, 8(12):9706–9716, 2020. 2


