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Overview of Appendixes

In this supplementary material, we present implemen-
tation details and more experiments results. First, more
experiments and analysis (e.g., analysis of overall recall
performance, experiments using stronger long-tail learning
strategy, and extra qualitative results) are described in Sec. 1.
We provides the implementation details in Sec. 2. Moreover,
we also present the details of graph assembling mechanism
and loss function in Sec. 3 and Sec. 4.

In this supplementary material, we present implementa-
tion details and more experimental results. First, more ex-
periments and analysis (e.g., analysis of overall recall perfor-
mance, experiments using stronger long-tail learning strate-
gies, and extra qualitative results) are described in Sec. 1. We
provide the implementation details in Sec. 2. Moreover, we
also present the details of the graph assembling mechanism
and loss function in Sec. 3 and Sec. 4.

1. More Experimental Results

1.1. Overall Recall Analysis
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Figure 1. Left) The statistics of entity sizes in visual relation-
ship based on the training set of Visual Genome. Right) The
performance (Recall@100) of relationship detection with respect
to different entity sizes. We define an entity as "small" if the area
of its box is smaller than 64 × 64 pixels.

First, we analyze why our SGTR achieves lower overall
recall performance than the traditional two-stage design. One
potential reason is that the SGTR uses an ResNet-101 back-
bone (like DETR) for entity detection rather than the Faster-
RCNN with an ResNet-101 FPN backbone. According to

the experimental results of DETR [1], using the ResNet-101
backbone achieves lower performance than Faster-RCNN
with the ResNet-101 FPN on small objects (21.9 versus 27.2
APs on the COCO dataset).

To confirm that, we further study how small entities in-
fluence visual relationship detection. We categorize the rela-
tionship instances in the Visual Genome dataset into three
disjoint sets according to their entity sizes, and plot the statis-
tics of the sets in Fig. 1. The result shows that more than
half of the relationships consist of small entities. We also
compare the performance of our method (R@100) on three
relationship sub-sets with the two-stage approach BGNN [6]
and report the performance in Fig. 1. The BGNN with the
two-stage design outperforms the SGTR on the relationships
with small entities by a large margin due to the inherent
limitation of DETR on small entity detection.

The issue of recognizing small objects efficiently and
effectively is still under active study [8, 11, 12, 16]. With
more sophisticated transformer-based detectors, the overall
recall of our method can be further improved.

1.2. Influence of Object Detector

We first compare the performances of DETR and faster
RCNN on the head (H), body (B) and tail (T) predicates
in Tab.1, which also groups the detector results into H/B/T
object classes. The result indicates that DETR achieves a
similar detection performance as Faster R-CNN for tail pred-
icates. Moreover, we equip BGNN with DETR and as shown
in Tab.2, its performance is on par with its Faster R-CNN
counterparts. Finally, we also combine DETR optimized in
SGTR with a finetuned BGNN. The results in Tab.2 clearly
show the SGTR outperforms this baseline, demonstrating
the benefit of our design.

Recall (S-DETR / RCNN)
Rel Head Rel Body Rel Tail

Ent Head 49.3 / 50.5 49.2 / 50.3 59.7 / 57.1
Ent Body 39.5 / 41.3 46.2 / 43.1 44.9 / 43.7
Ent Tail 44.3 / 41.7 47.6 / 44.5 45.1 / 38.5

Table 1. The entity detection performances of DETR and faster
RCNN on the head (H), body (B) and tail (T) predicates.
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M mR@50/100 R@50/100 H B T AP@det mR@det

BGNN 8.4 / 9.8 29.0 / 33.7 30.0 11.2 2.2 29.9 41.1
BGNND 6.3 / 7.7 25.4 / 29.5 28.5 7.2 1.5 30.7 41.2
BGNNS 6.7 / 8.3 25.6 / 29.7 28.5 7.2 3.0 31.2 41.0
SGTR† 14.4 / 17.7 24.8 / 28.5 21.7 21.6 17.1 31.2 41.0

Table 2. ’D’ means DETR. ’S’ means DETR optimized in SGTR.
† means bi-level resampling, ’AP’: mAP50, and ’mR’: mRecall

(a) Pre-class Instance frequency of entity

(b) Per-class Detection AP of entity

Figure 2. The frequency statistics and per-class detection per-
formance of entities on the VG dataset. (a): The frequency of
each entity category; (b) The per-class entity detection performance
(AP).

1.3. Experiments with Long-tail Learning Strategy

Method mR@50/100 R@50/100 Head Body Tail

Ours 12.0 / 15.2 24.6 / 28.4 28.2 18.6 7.1
Ours∗ 15.8 / 20.1 20.6 / 25.0 21.7 21.6 17.1
Ours-P 18.9 / 22.0 22.1 / 24.8 26.0 20.9 15.2

OursDisAlign 13.7 / 16.8 24.1 / 28.0 26.8 21.7 8.9
OursACBS 16.5 / 19.8 20.8 / 23.6 23.4 21.6 17.5
OurscRT 18.8 / 21.6 22.0 / 24.8 24.1 22.1 18.1

Table 3. The performance of SGTR by adopting the advanced
long-tail learning strategy on the VG dataset. "*" denotes the
bi-level sampling proposed in [6]; "P" denotes the modified bi-level
sampling; The "cRT" denotes the decoupled retraining strategy
on predicate classifier proposed by [4]; the "DisAlign" denotes
the retraining strategy for logits adjustment proposed by [14]; the
"ACBS" refers to the alternative class balanced retraining strategy
proposed by [3].

Long-tail data distribution is a challenging issue in the
SGG. To achieve better performance on the SGG task, we
further apply several recent long-tail learning strategies in
our model. [3, 4, 14], and report the performance in Tab. 3.
We find that there exists a trade-off between overall and mean
recall in the comprehensive experimental results. The ad-
vanced learning strategies enable our model to either achieve
a higher mean recall or maintain a better trade-off between
overall and mean recall.
• We adopt the retraining strategy, DisAlign [14], to ad-
just the predicate prediction logits via loss re-weighting

with respect to the instance distribution of relationships.
This method improves the performance trade-off between
mR@100 and R@100 by increasing mean recall by 1.6 and
achieving only a 0.4 performance drop on R@100.
• Moreover, we re-implement the alternative class-balanced
retraining strategy (ACBS) [3], which achieves the SOTA on
mean recall with the two-stage SGG model. The ACBS re-
trains both entity and predicate classifiers using class-based
sampling. This method achieves high mean recall perfor-
mance while sacrificing the performance of the overall per-
formance.
• Finally, we apply the decoupled retraining strategy [4]
on the predicate classifier of SGTR. We observe that using
additional balanced-sampling retraining results in 6.4 perfor-
mance gain on mR@100 with a 3.6 drop on R@100. This
strategy outperforms the aforementioned methods in terms
of mean recall performance.

We also observe that using the re-balance idea on en-
tity classifier does not bring too much performance benefit.
To investigate this phenomenon, we report the relationship
between the per-class instance frequency and the perfor-
mance of entity detection in Fig. 2. Despite the fact that the
distribution of entity instances obeys the long-tail distribu-
tion, SGTR’s entity detection performance is quite balanced,
which means that the transformer-based detector is capable
of tackling the data imbalanced scenario to some degree, and
the additional re-balancing strategy is unnecessary.

1.4. Zero-shot Recall

We compare our method with VCTree-TDE in Tab.4,
achieving a gain of 2.6 on zR@100. The result shows the
generalization capability of SGTR to unseen relationships.
We greatly appreciate R2’s suggestions and will leave the
further exploration to future work.

zR BGNN† BGNN†
D DT2-ACBS† VCTree-TDE SGTR

@50 0.4 0.5 0.3 2.6 2.4
@100 0.9 0.7 0.5 3.2 5.8

Table 4. The performance of zero-shot relationship retrieval.

1.5. Model Selection

We present experiments for selecting the hyper-
parameters (Nr, K) on validation set of VG in Tab.5. The
performance saturates at Nr = 160 and K = 3 .

Nr mR@100 R@100 K mR@100 R@100

100 16.1 27.5 1 16.4 26.2
130 16.3 27.3 2 17.3 28.2
160 17.7 28.5 3 17.7 28.5
190 16.1 27.0 4 17.5 28.2

Table 5. The performance of different choices of hyper-parameters
Nr .
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Figure 3. Comparison of entity indicator of predicate node and entity node. We use the different colored bounding boxes of entities to
distinguish between the entity node (red) and the entity indicator (pink). The yellow arrow indicates the predicate between the entities. (best
viewed in color)
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Figure 4. Qualitative comparison between our method and BGNN† in SGG. Both methods predict many reasonable relationships which
are not annotated in GT. We mark the relationships of rare semantic predicate categories retrieved by SGTR in red (best viewed in color).

1.6. Qualitative Results

Visualization of Entity Indicator and Entity Node To
demonstrate the effectiveness of our proposed graph assem-
bling mechanism, we visualize predictions of entity indica-
tors of our predicate representation and entity nodes after the
graph assembling. As shown in Fig. 3, the entity indicator
only provides a rough localization and classification of en-
tities rather than precise bounding boxes. This information
can be refined into more accurate entity results with graph
assembling, which significantly improves the quality of the
generated scene graph.

Prediction Comparision between Different Design We
compare different method (e.g., BGNN [6]) by visualizing
the relationship predictions. In Fig. 4, we mark the different
relationship predictions between BGNN and SGTR with red

color. It shows that SGTR retrieves more relationships of
less frequent semantic categories than BGNN.

2. Implementation Details
We implement our method based on the PyTorch 1.8 [9]

and cvpods [15]. Our training process consists of two phases:
1) entity detector pre-training and 2) SGTR joint training.

Entity Detector Pre-training Phase: We follow the
DETR training configuration to learn the entity detector on
Visual Genome and Openimage datasets. We train the entity
detector with the AdamW optimizer with a learning rate of
1e-5, a batch size of 16, and the model takes 100 epochs for
convergence on 4 TITAN V GPUs. We use the same scale
augmentation with DETR, resizing the input images such
that the shortest side is at least 480 and at most 600 pixels,
while the longest is at most 1000. The hyper-parameters of



Transformer (e.g., number of attention heads, drop-out rate)
are also kept the same with the DETR.

Joint Learning Phase: In the joint training phase, we
adopt the same optimizer, learning rate, and batch size con-
figuration as in the entity detector pre-training stage. In
contrast with the two-stage SGG model, we refine the param-
eters of the detector in the joint learning rather than freezing
the detector. We empirically observe that this refinement fur-
ther improves the performance of entity detection. We train
the SGTR for the Visual Genome dataset for 8.39e4 itera-
tions without learning rate decay by using an early-stopping
strategy. For the Openimage dataset, we train the model with
1.5e5 iterations, and the learning rate is decreased by 0.1x
after 1e5 iterations.

We re-implement the previous two-stage methods
(BGNN [6] and RelDN [13]) in our codebase by using the
same configuration as the released codes. For fair compra-
sion, we replace the ResNeXt-101 FPN backbone with the
ResNet-101 backbone to learn the model. We also apply the
one-stage HOI works (AS-Net [2] and HOTR [5]) on the
SGG. We use the hyper-parameters of the models reported
by the authors. All experiments are conducted by training
the model until convergence.

3. Correspondence Matrix for Assembling
For clarity, we will use the correspondence matrix be-

tween the subject entity and predicate Ms to introduce the
details. The correspondence matrix is determined by the
distance function, which takes the semantic outputs (e.g.
bounding boxes B, classification P of the entity detector
and entity indicator of the predicate structural decoder) as
input. Specifically, the distance function consists of two
parts: spatial matching distance dloc ∈ RNr×Ne and cate-
gory matching distance dcls ∈ RNr×Ne , as shown in Eq. 1

Ms = dloc(Bs,Be) · dcls(Ps,Pe) (1)

Each element in the correspondence matrix Ms is calcu-
lated by pairing the Nr predicate predictions with Ne entity
predictions, as shown in the following equations:

Ms
i,j = dloc(Bs(i),Be(j)) · dcls(Ps(i),Pe(j)) (2)

= dloc(bs,i,be,j) · dcls(ps,i,pe,j) (3)

where i ∈ [0, Ne], j ∈ [0, Nr] for enumerating each pair
between the predicate proposal and entity set.

Then we present the two components of the distance
function, dloc and dcls. Specifically, the dloc consists of the
dgiou ∈ RNr×Ne and dcenter ∈ RNr×Ne , as show in Eq. 4.

dloc(bs,be) =
dgiou(bs,be)

dcenter(bs,be)
(4)

Concretely, the dgiou is the clipped GIOU of the entity and
the indicator’s bounding boxes, and dcenter is the L1 dis-
tance between the bounding boxes’ centers in Eq. 5, 6. The
center points-based matching has also been adopted in HOI
methods [2, 7, 10].

dgiou(bs,be) = max(min(GIOU(bs,be), 0), 1) (5)
dcenter(bs,be) = ||[xc, yc]

s
i − [xe, ye]

e
i ||1 (6)

Here [xs, ys]
s and [xe, ye]

e are the normalized center coordi-
nates of the bounding box in bs and be respectively. For the
dcls, we use the cosine distance to calculate the similarity of
the classification distribution between two entity predictions,
as shown in following equation:

dcls(ps,pe) =
ps · p⊺

e

||ps|| · ||pe||
(7)

4. Matching Cost and Loss Function
4.1. Triplets Matching Cost

We use the set-matching strategy to supervise the relation-
ship predictions T = {(bs

e,p
s
e,b

o
e,p

o
e,pp,bp)}. To obtain

the matches, we need to calculate and minimize the matching
cost C ∈ RNr×Ngt between the Nr relationship predictions
and the Ngt GT relationships. Concretely, the matching cost
C includes two parts: the predicate cost Cp and the entity
cost Ce, as:

C = λpCp + λeCe (8)

where λp, λe is the coefficients of two cost terms.
The predicate cost, Cp(i, j) between the i-th predicate

prediction and the j-th ground-truth relationship is com-
puted according to the predicate classification distribution
and location prediction in Eq. 9:

Cp(i, j) = exp
(
−pgt

p,j · p
⊺
p,i

)
+ ∥bp,i − bgt

p,j∥1 (9)

where pp,i ∈ R1×Cp is the i-th Pp, and pgt
p,j ∈ R1×Cp is the

one-hot predicate label of the j-th ground truth relationship.
Similarly, bp,i ∈ R1×4 and bgt

p,j ∈ R1×4 are the center coor-
dinates of the entity pair from the i-th relationship prediction
and the j-th ground truth relationship, respectively.

The entity cost Ce(i, j) between the i-th predicted rela-
tionship and j-th ground-truth relationship is given by:

Ce(i, j) =wgiou ·
∏

⋆={s,o}

exp
(
−dgiou(b

⋆
e,i,b

⋆
gt,j)

)
(10)

+ wl1 ·
∑

⋆={s,o}

||b⋆
e,i − b⋆

gt,j ||1 (11)

+ wcls ·
∏

⋆={s,o}

exp
(
−p

(⋆,gt)
e,j · p⋆

e,i
⊺
)

(12)



where the b⋆
e,i and p⋆

e,i are the i-th subject/object entity
box and category distribution of relationship T after graph
assembling, respectively. The b⋆

gt,j and p
(⋆,gt)
e,j is the sub-

ject/object bounding boxes and one-hot entity category label
from j-th ground truth relationships.

4.2. Loss Calculation

Our total loss L is composed of entity detector loss Lenc

and predicate node generator loss Lpre:

L = Lenc + Lpre (13)

The entity detector loss Lenc is calculated independently by
following the same design in DETR [1].

The loss of predicate node generator Lpre is determined
by the prediction and ground-the relationships according to
the matching index Itri ∈ NNgt . The Itri stores the index of
matched predictions for each GT relationship. Specifically,
the predicate node generator loss consists of entity indicator
loss Lpre

i and predicate sub-decoder loss Lpre
p :

Lpre = Lpre
i + Lpre

p (14)

For loss of predicate sub-decoder loss Lpre
p , we have:

Lpre
p =

Ngt∑
i

(
∥bp,Itri(i) − bgt

p,i∥1 + CE
(
pp,Itri(i),p

gt
p,i

))
(15)

where bgt
p,i and bp,Itri(i) is the entity center coordinates

of the GT relationship and prediction, respectively. The
CE denotes the cross entropy loss between the predicate
classification bp,Itri(i) and the GT predicate category one-
hot vector pgt

p,i.
For the entity indicator loss Lpre

i :

Lpre
i =

∑
⋆={s,o}

(
L⋆
ent_loc + L⋆

ent_cls

)
(16)

where ⋆ = {s, o} indicates the subject/object role of an
entity in relationships. The indicator loss is composed of
two factors, L⋆

ent_loc and L⋆
ent_cls, for two types of semantic

representation: bounding boxes bs,bo and classification
ps,po.

L⋆
ent_loc =

Ngt∑
i

(
∥b⋆,Itri(i) − bgt

⋆,i∥1 (17)

+1− GIOU
(
b⋆,Itri(i),b

gt
⋆,i

))
(18)

L⋆
ent_cls =

Ngt∑
i

CE
(
p⋆,Itri(i),p

gt
⋆,i

)
(19)

The L⋆
ent_loc is computed by the L1 distance and GIoU loss

between the bounding box outputs b⋆,Itri(i) and ground-
truth entity boxes bgt

⋆,i. The L⋆
ent_cls is calculated from the

cross entropy loss of classification prediction p⋆,Itri(i) ac-
cording to ground-truth entities’category pgt

⋆,i.

5. Social Impacts
Our method has no direct potential negative impact, one

possible negative impact is that SGG may serve as a base
module for surveillance abuse.
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