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A. Sensitivity Analysis

A.1. Parameter Sensitivity

As shown in Table 1, we analyze the sensitivity in terms

of the adaptation intensity λ1,2, where λ1 works on the node

classification loss and λ2 controls the intensity of structure-

aware matching loss. We first try a group of consistent pa-

rameters {0.05, 0.1, 0.2} for λ1,2 (1st to 3rd lines), find-

ing that decreasing the values leads to a significant perfor-

mance drop compared with our main settings (λ1,2 = 0.1).

By fixing λ1, increasing and decreasing λ2 sightly de-

crease the overall performance, demonstrating that our set-

ting (λ2 = 0.1) is optimal. By fixing λ2, decreasing λ1

shows a significant negative impact on the framework while

increasing it gives some further improvements. These re-

sults demonstrate that the larger intensity on the node loss

contributes to establishing a better graphical space for the

graph-matching-based adaptation.

λ1 λ2 mAP0.5:0.95 mAP0.5 mAP0.75

0.05 0.05 22.8 42.2 21.4

0.1 0.1 24.0 43.5 23.5

0.2 0.2 24.2 43.3 23.3

0.1 0.05 23.2 42.9 23.0

0.1 0.2 23.5 43.3 23.1

0.05 0.1 22.3 42.0 21.8

0.2 0.1 24.2 43.7 23.1

Table 1. Comparison results on Cityscapes→Foggy Cityscapes

(%) of different settings of λ1 and λ2. We set λ1,2 = 0.1 in the

experiments of the manuscript as 2nd line.

A.2. Position Sensitivity

We further investigate the position to deploy the Node

Discriminator (ND) to align the matched nodes, and record
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the comparison results in Table 2. We compare three set-

tings for the node alignment, i.e., P1: semantic-complete

nodes Vs/t (without the hallucination nodes), P2: enhanced

nodes after graph convolution Ṽs/t, and P3: the nodes after

Cross Graph Interaction (CGI) V̂s/t. It can be observed that

performing the alignment on the semantic-complete nodes

(P1) achieves the best results with well-aligned node pairs.

Besides, we find a significant performance drop on P3 be-

cause the proposed CGI will exchange information across

domains, confusing the discriminator and harming the ad-

versarial alignment. Hence, aligning nodes in P1 is optimal

in the proposed method as the setting in our manuscript.

Pos. prsn rider car truc bus train moto bike mAP

P1 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5

P2 43.9 46.0 57.0 29.7 53.9 39.7 34.6 39.6 43.0

P3 44.0 45.4 57.2 25.2 48.4 26.8 27.5 38.7 39.2

Table 2. Comparison results on Cityscapes→Foggy Cityscapes

(%) by deploying the ND on different nodes, i.e., semantic-

complete nodes Vs/t (P1), enhanced nodes after graph convolution

Ṽs/t (P2), and the nodes after cross graph interaction V̂s/t (P3).

A.3. Normalization Sensitivity

The proposed method transforms the visual feature to

the graphical space (V2G) with a projection module (Fc-

Norm-ReLU-Fc). Hence, we present a comparison among

different projection strategies with different normalization

(Norm) tricks, including Group Normalization (commonly

used in the FCOS [16] detection head), Batch Normaliza-

tion (commonly used in the ResNet [4] backbone network),

and Layer Normalization [1], as shown in Table 3. Our pro-

jection design with Layer Normalization works better on

node embedding than other common settings, preserving

node-based correspondence and achieving the best adapta-

tion result (43.5% mAP).



Pos. prsn rider car truc bus train moto bike mAP

GN 45.7 44.9 63.1 24.8 48.3 43.2 32.6 40.9 42.9

BN 46.1 42.8 61.7 27.6 45.5 34.8 32.0 38.0 41.0

LN 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5

Table 3. Comparison results on Cityscapes→Foggy Cityscapes

(%) of different normalization strategies in the vision-to-graph

(V2G) transformation.

B. Discussion

B.1. Baseline Selection

Two-stage v.s. single-stage baselines. Two-stage object

detectors, e.g., Faster RCNN [10], consist of a feature ex-

tractor, a Region Proposal Network (RPN) and a detection

head for classification and regression. These approaches

first adopt RPN on image features to obtain Region of In-

terests (RoIs), and then perform detection based on these

region proposals. Differently, single-stage object detec-

tors [9, 16] only contain a feature extractor and detection

head, and these approaches directly make prediction on im-

age features without RPN.

Reasons for the singe-stage baseline. In this paper, we

mainly focus on the domain adaptation for singe-stage ob-

ject detectors as lots of recently published works [2,5±8,15],

and we select the single-stage detector as the baseline be-

cause of the following two main reasons.

1) Discarding RPN. Most adaptation works [18, 20, 21]

perform adaptation on both image features and RoI repre-

sentations, which highly rely on the RPN and are limited to

the two-stage detectors. In contrast, our method achieves

fine-grained adaptation only using image features and to-

tally discards the RPN, yielding enormous potentials to be

generalized to different baselines. Hence, we use the single-

stage baseline free of RPN in our method to demonstrate the

advantages without bells and whistles.

2) Fair comparison. The fairness and agreement of the

benchmark comparison have been proven in recently pub-

lished literature [2, 5, 7, 8, 15] for single-stage object detec-

tors due to the comparable source only results and adapta-

tion gains. Besides, we also report the fair adaptation gains

in benchmark comparison to demonstrate our effectiveness

in terms of domain adaptation. Moreover. most of the latest

adaptation works [2,5,7,8,15] are based on the single-stage

detectors [9, 16], and we aim to present a comparison with

them using same baseline model.

Potentials for the two-stage extension. We psropose a

Graph-embedded Semantic Completion module (GSC) to

complete the mismatched semantics and leverage a Bipar-

tite Graph Matching adaptor (BGM) to achieve fine-grained

adaptation on image features. These two modules are to-

tally independent of the detection baseline types and can be

effortlessly extended to different baselines by deploying on

the features extracted from backbone networks.

B.2. Limitation

Though the proposed model could achieve state-of-the-

art results, it may have some failure cases (Figure 1) due to

the limited visual features. As shown in 1st and 2nd row, we

find that our method may miss and wrongly detect some dis-

tant objects obscured by heavy fog, e.g., the missing truck

(1st row) and the wrongly detected person (2nd row), due to

the poor visual features caused by the tiny scale (long dis-

tance) and low-quality appearance (heavy fog). This prob-

lem can be solved from two aspects, i.e., improving visual

representations and compensating for visual features with

other cues. On the one hand, we can use more robust back-

bone networks, e.g., ResNet-101 [4], to obtain better fea-

tures than the VGG-16 backbone [12]. On the other hand,

we can establish graph matching between visual and lin-

guistic cues [19] to compensate for the limited visual fea-

tures with extra semantics.

Figure 1. Illustration of some failure examples compared between

(a) the proposed SIGMA framework and (b) ground-truth.

C. Implementation Details

C.1. Discriminator Architecture

As shown in Table 4, we present the detailed architecture

of the adversarial alignment module in our SIGMA frame-

work, which includes the loss terms LGA and LNA. We

adopt image-level global alignment [3] using the Global

Discriminator as [3, 5±7, 15, 17, 18, 20]. Then, we intro-

duce a node discriminator to align well-match graph nodes,



as illustrated in the bottom part of Table 4. Considering

the graph nodes refactor the image-level spatial correspon-

dence with edge connections, we replace the convolution

layers with fully-connected layers. Besides, we change the

Group Normalization (GroupNorm) with Layer Normaliza-

tion (LayerNorm) due to the advantage of operating the

node-based representation, as in Sec. A.3.

Global Discriminator [5]

Gradient Reversal Layer (GRL)

Conv 256 × 3 × 3, stride 1 → GroupNorm → ReLU

Conv 256 × 3 × 3, stride 1 → GroupNorm → ReLU

Conv 256 × 3 × 3, stride 1 → GroupNorm → ReLU

Conv 256 × 3 × 3, stride 1 → GroupNorm → ReLU

Conv 1 × 3 × 3, stride 1

Node Discriminator (ours)

Gradient Reversal Layer (GRL)

Fc 256 → LayerNorm → ReLU

Fc 256 → LayerNorm → ReLU

Fc 256 → LayerNorm → ReLU

Fc 1 → LayerNorm → ReLU

Table 4. Architectures of the adversarial alignment modules.

C.2. Implementation and Training

1) Different blocks. The non-linear projection layer

used in the vision-to-graph (V2G) transformation is de-

ployed with a Fc-LayerNorm-ReLU-Fc block, and the clas-

sifier for node classification is Fc-ReLU-Fc.

2) Dropout rate. The dropout rate is set 0.1 for the edge-

drop [11] to avoid the potential visual bias.

3) Spectral clustering. For the learning of the graph-

guided memory bank, we perform spectral clustering if the

number of nodes is larger than 5 to ensure the clustering

reliability. Besides, we replace the Laplacian affinity [14]

with K-Nearest Neighbor (K=5) in the clustering algorithm,

which reduces the time-consuming significantly.

4) End-to-end training. Our method can achieve end-

to-end training without the warm-up stage. We utilize

halved source nodes as the placeholders if no nodes appear

in the target domain to train our matching module and intro-

duce extra 10,000 iterations for training, which can achieve

the same results as the warm-up-included strategy.

5) Multiple matching. The detailed implementation

of the multiple-matching ablation study (in Table 5 of our

manuscript) is as follows,

Lmat = Loss[sigmoid(Maff),YΠ], (1)

where Maff is the node affinity without adopting Instance

Normalization and the Sinkhorn [13] layer, and Loss[A,B]
can be selected as the BCE and MSE loss to evaluate the

difference between A and B.

Algorithm 1 Semantic-complete Graph Matching

Input:

Is/t: source and target images

Ys: source annotations

λ1,2: hyperparameters in the loss function

Output:

Domain adaptive object detector Θ
1: for l = 1 to maxiter do

2: extract image features Fs/t witn backbone networks;

3: generate global alignment loss LGA on Fs/t;

4: send Fs/t to the detection head to generate Ldet with

Fs and classification maps Mt with Ft;

Graph-embedded Semantic Completion (GSC)

5: perform V2G transformation to obtain nodes Vraw
s/t ;

6: generate node alignment loss LNA;

7: perform DNC for semantic-complete nodes Vs/t;

8: establish graphs Gs/t and perform GCN for Ṽs/t;

9: update GMB with enhanced nodes Ṽs/t;

Bipartite Graph Matching (BGM)

10: perform CGI obtaining V̂s/t and generate loss Lnode;

11: perform SNA matrix learning to obtain M̃aff ;

12: generate graph matching Lmat;

Network Parameter Updating

13: use L = λ1Lnode + λ2Lmat + LNA + LGA + Ldet

to update network parameters with backpropagation;

14: end for

15: return Domain adaptive object detector Θ;

C.3. Optimization Pipeline

The overall optimization pipeline of the proposed

SIGMA framework is shown in Algorithem 1. Given the

source and target images Is/t, source annotations Ys, and

some predefined hyperparameters λ1,2, we implement the

SIGMA framework to obtain a domain adaptive object de-

tector Θ with maxiter iterative training.

D. Qualitative Results

D.1. Matching Visualization

As shown in Figure 2, we visualize the learned doubly

stochastic node affinity matrix M̃aff and the ground-truth

matrix YΠ (Refer to Figure 2 of the manuscript for bet-

ter understanding.). Each activated entry M̃
i,j
aff

represents

a matched node pair across domains, and each activated

entry Y
i,j
Π

= 1 (marked in red) indicates that the source

node v̂is and the target counterpart v̂
j
t are in the same cate-

gory. Based on the proposed structure-aware matching loss,

each source node successfully find an optimal target node in

the same category adaptively and match it to achieve graph-

matching-based adaptation.



Figure 2. Illustration of (a) the learned doubly stochastic affinity

matrix M̃aff and (b) the ground-truth YΠ. Each activated entry

M̃
i,j
aff

represents an adaptive matching between the source node

v̂
i
s and target node v̂

j
t . Each positive entry Y

i,j
Π

(marked in red)

indicates that the node v̂
i
s and v̂

j
t are in the same category.

D.2. Qualitative Comparison

We present more qualitative comparisons among (a)

source only, (b) EPM [5], (c) the proposed SIGMA, and

(d) ground-truth in Figure 3-6. Our method can eliminate

some missing errors (false-negative cases) and avoid some

wrong classification cases (false-positive cases) compared

with the class-agnostic method EPM [5], which verifies the

effectiveness of aligning class-conditional distributions.
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Figure 3. Qualitative reustks on the Cityscapes→Foggy Cityscapes adaptation scenario of (a) the source only model, (b) EPM [5], (c) the

proposed SIGMA, and (d) Ground-truth. (Zooming in for best view.)



Figure 4. Qualitative results on the Cityscapes→Foggy Cityscapes adaptation scenario of (a) the source only model, (b) EPM [5], (c) the

proposed SIGMA, and (d) Ground-truth. (Zooming in for best view.)



Figure 5. Qualitative results on the Cityscapes→Foggy Cityscapes adaptation scenario of (a) the source only model, (b) EPM [5], (c) the

proposed SIGMA, and (d) Ground-truth. (Zooming in for best view.)



Figure 6. Qualitative results on the Cityscapes→Foggy Cityscapes adaptation scenario of (a) the source only model, (b) EPM [5], (c) the

proposed SIGMA, and (d) Ground-truth. (Zooming in for best view.)


