
Appendix

A. Implementation Details

A.1. Complete Algorithm

Training the StyleT2I framework contains two steps—
Step 1: train the Text-to-Direction module (Algorithm 1);
Step 2: train the Attribute-to-Direction module (Algo-
rithm 2). The pseudocode of the inference algorithm of
StyleT2I for synthesizing images conditioned on the given
text is shown in Algorithm 3.

Algorithm 1: Train Text-to-Direction module
Input: G: pretrained generator, Mt: training

iterations, T = {t}: training set of text.
Output: Ftext: Text-to-Direction module

1 for k : 1 . . .Mt do
2 z ∼ W+ // random latent code

sampled from W+ space
3 t ∼ T // text sampled from the

training set
4 s = Ftext(z, t) // predict sentence

direction
5 zs = z+ s // text-conditioned code

6 Î = G(zs) // synthesize image

7 Ls = Lcontras(̂I, t) + Lnorm(s) // compute
loss

8 Ftext ← Adam(∇FtextLs) // update Ftext
9 return Ftext

A.2. Hyperparameters and Network Architecture

We pretrain StyleGAN2 on each dataset (CelebA-HQ [18]
and CUB [61]) with 300,000 iterations. In CLIP [47], we
use ViT-B/32 [10] architecture as the image encoder. We
use Adam optimizer [22] with 10−4 learning rate to train
both modules. The Text-to-Direction module is trained with
60,000 iterations and the batch size is 40. The Attribute-to-
Direction module is trained with 1000 iterations with batch
size of 2. The architectures of Text-to-Direction module and
Attribute-to-Direction module are shown in Fig. 10.
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Figure 10. Detailed architectures of (a) Text-to-Direction module
and (b) Attribute-to-Direction module.

Algorithm 2: Train Attribute-to-Direction module
Input: V = {ta}: attribute vocabulary, G:

pretrained generator, S: weakly-supervised
segmentation network, Ma: training
iterations

Output: Fattr: Attribute-to-Direction module
1 for m : 1 . . .Ma do
2 z ∼ W+ // random latent code

sampled from W+ space
3 ta ∼ V // attribute sampled from

vocabulary
4 a = Fattr(z, t

a) // predict attribute
direction

5 zapos = z+ a // positive latent code

6 zaneg = z− a // negative latent code

7 Iapos = G(zapos) // positive image

8 Ianeg = G(zaneg) // negative image

9 Ma = S(Iapos)

// pseudo-ground-truth mask
10 Iadiff =

∑
c |Iapos − Ianeg| // pixel-level

difference

11 Ĩadiff =
Iadiff−min(Iadiff)

max(Iadiff)−min(Iadiff)
// min-max

normalization
12 La = Lsemantic(I

a
pos, I

a
neg, t

a) +

Lspatial(̃I
a
diff,M

a) + Lnorm(a) // compute
loss

13 Fattr ← Adam(∇FattrLa) // update Fattr
14 return Fattr

A.3. Attribute Extraction

On CelebA-HQ dataset, we use string matching to extract
attributes from the text. For example, the word “bangs” in
the sentence indicates the “bangs” attribute. On CUB dataset,
we extract attributes based on part-of-speech (POS) tags and
dependency parsing implemented in spaCy [16]. Concretely,
given a text, we extract adjectives and nouns based on POS
tags. Then, we leverage their dependency relations to extract
the attributes. For example, in the text “the bird has a yellow
breast,”, “yellow” and “breast” has the adjectival modifier
(amod) dependency relation, which indicates the “yellow
breast” attribute. We also use other dependency relations to
deal with sentences with more complex sentence structures.
For example, in the text “the bird has a brown and yellow
breast,” “yellow” and “brown” have the “conjunct” (conj) de-
pendency relation, which indicates two attributes—“yellow
breast” and “brown breast.”



Algorithm 3: Inference algorithm of StyleT2I
Input: G: pretrained generator, t: input text,

{tai }Ki=1: extracted K attributes from text,
Ftext: Text-to-Direction module, Fattr:
Attribute-to-Direction module

Output: Î: synthesized image conditioned on the
input text

1 z ∼ W+ // random latent code
sampled from W+ space

2 s = Ftext(z, t) // predict sentence
direction

3 A = {ai | cos(ai, s) ≤ 0}. // set of
attributes need to be adjusted

4 s′ = s+
∑

ai∈A
ai

||ai||2 // adjust sentence

direction
5 zs = z+ s′ // text-conditioned code

6 Î = G(zs) // synthesize image

7 return Î

A.4. Pseudo-ground-truth Mask

We use [17] as a weakly-supervised part segmentation net-
work to obtain pseudo-ground-truth masks. The network is a
classifier supervised by binary attribute labels extracted from
text. In specific, since each image is paired with multiple
texts, we use the union of attributes extracted from multiple
texts as the image’s attribute label. For example, if the image
has two captions (1) “the woman is smiling” and (2) “the
woman has blond hair,” the attribute label for this image
is (“woman”, “smiling,” and “blond hair”). Based on these
(image, binary attribute label) pairs, we train the network
with binary cross-entropy loss. After training the network,
we obtain an image’s pseudo-ground-truth mask based on its
attention map (Fig. 4 in [17]). We use Otsu method [38] to
threshold the attention map as the final pseudo mask ground-
truth. Examples of pseudo-ground-truth mask are shown in
Fig. 11.

A.5. Finetune CLIP

We finetune the last few layers of CLIP. Specifically, we
finetune the last visual resblock, “ln post,” “proj”, the last
text transformer resblock, “ln final”, “text projection,” and
“logit scale” in CLIP. Following [39], we use AdamW [36]
optimizer and 5× 10−4 learning rate.

When finetuning CLIP for the CLIP-guided Contrastive
Loss (Eq. 1), the objective function for finetuning is con-
trastive loss defined in [47], where we use the (real image,
text) pairs from the training split of the dataset for computing
the contrastive loss.

As reported by Zhang et al. [71], using the same model
in training and testing can skew the R-Precision results. To

beard

bangs

bushy eyebrows

smiling

red throat

yellow breast

yellow forehead

black crown

(a) Pseudo-ground-truth mask on CelebA-HQ.

(b) Pseudo-ground-truth mask on CUB.

Figure 11. Pseudo-ground-truth masks generated by [17] on
CelebA-HQ [18] and CUB [61] datasets. The pseudo-ground-truth
mask of the each attribute (e.g., beard) is highlighted in white.

alleviate this issue, for computing R-Precision results, we
use a CLIP model that is different from the one used in
training. We use the contrastive loss to finetune CLIP on
the whole dataset (both training and testing splits), which is
different from the CLIP used in training (finetuned on the
training split only).

When finetuning CLIP for the Semantic Matching Loss
(Eq. (4)), the objective function for finetuning is binary
cross-entropy loss. Concretely, the image’s predicted
probability of an attribute is computed by sigmoid(τ ·
cos(Eimg

CLIP(I), E
text
CLIP(t

a))). Here, I denotes an image. ta

denotes an attribute. τ is the “logit scale” parameter in CLIP
optimized during finetuning. The predicted probability is
used in binary cross-entropy to compute the loss.

B. Ablation Studies of Text-to-Image

We show more ablation studies results of text-to-image
synthesis.



R-Precision ↑ FID ↓
w/o CLIP-guided Contrastive Loss 0.488 17.06
w/o norm penalty 0.736 25.75
w/o Spatial Constraint 0.607 17.45
w/o Compositional Attribute Adjustment 0.594 17.59
w/o finetune CLIP 0.344 17.79
Full Model 0.625 17.46

Table 4. Ablation study of StyleT2I on CelebA-HQ [18] dataset.
Top-2 results are bolded and the worst results are underlined.

dataset threshold (θ) R-Precision ↑ FID ↓

CelebA-HQ
8 (min) 0.625 17.46
16 (mean) 0.815 21.35
31 (max) 0.801 25.77

CUB
8 (min) 0.264 20.53
20 (mean) 0.395 22.41
39 (max) 0.375 26.97

Table 5. Ablation study on the threshold of norm penalty (θ in
Eq. 2). Here, “min”, “mean”, and “max” stand for the minimum,
average, and maximum ℓ2 norm of two randomly sampled latent
codes of the pretrained StyleGAN.

Results on CelebA-HQ We show the ablation study re-
sults on CelebA-HQ dataset in Tab. 4. The results are consis-
tent with the ablation study results on CUB dataset in Tab. 3,
which further proves the effectiveness of each component of
StyleT2I.

Threshold of norm penalty (θ) We conduct an ablation
study on different threshold values (θ) of norm penalty
(Eq. (2)). To better decide the threshold used for norm
penalty, we compute the minimum (min), mean, and maxi-
mum (max) ℓ2 norm between two random latent codes sam-
pled from W+ space of StyleGAN (sampling from W+
space is performed by feeding the sampled Gaussian noise
to the “Mapping Network” in StyleGAN). We found that
the minimum ℓ2 norm in StyleGAN trained on CelebA-HQ
and CUB datasets are 8.2 and 8.9, respectively. Therefore,
we choose θ = 8 in our experiment to force the Text-to-
Direction and Attribute-to-Direction modules find the direc-
tion with the smallest norm. As results shown in Tab. 5,
although larger θ can increase R-Precision results, it also
renders worse image quality (larger FID values). Hence, us-
ing θ = 8 strikes a nice balance between image-text balance
and image quality.

Alternatives to norm penalty We also tried other alter-
natives to improve image quality. One way is using the
discriminator loss—making the synthesized image fool a
discriminator. Another approach is using the perceptual loss
to minimize the feature distance between the synthesized
and real images. As the results shown in Tab. 6, our norm

dataset method for image quality FID ↓

CelebA-HQ
discriminator 32.83
perceptual loss 24.98
norm penalty (Ours) 17.46

CUB
discriminator 26.25
perceptual loss 29.49
norm penalty (Ours) 20.53

Table 6. Ablation study of different methods for improving image
quality.

Method R-Precision ↑ FID ↓
ControlGAN 0.498 17.36
DAE-GAN 0.546 19.24
TediGAN-A 0.026 12.92
TediGAN-B 0.354 14.19
StyleT2I (Ours) 0.635 15.60

Table 7. Results on CelebA-HQ’s standard split.

penalty is the most effective way to ensure the image quality,
while other approaches produce much higher FID values
(i.e., worse image quality results).

Training Stage Regularization We create an alternative to
Compositional Attribute Adjustment—“Training Stage Reg-
ularization.” While our Compositional Attribute Adjustment
adjusts the sentence direction during the inference stage,
“Training Stage Regularization” maximizes the cosine simi-
larity between the sentence direction and attribute directions,
i.e., max

∑
i cos(s,ai), which is added as an additional loss

to Eq. 3 to regularize the Text-to-Direction module during
the training stage. The results comparing the “Training Stage
Regularization” and Compositional Attribute Adjustment are
shown in Tab. 8. Two methods achieve similar FID results.
However, our Compositional Attribute Adjustment achieves
better R-Precision results than “Training Stage Regulariza-
tion.” We believe the reason is that regularizing during the
training stage only helps for seen attribute compositions in
the training set, which cannot ensure the correct attribute pre-
diction during the inference stage. Therefore, our proposed
Compositional Attribute Adjustment can better improve the
image-text alignment by adjusting the results during the
inference stage for text with unseen attribute compositions.

Different z We sample three different z for each text to
compute the standard deviation of R-Precision, which is
0.008, proving that z does not have a significant effect on
the image-text alignment. The synthesized images of the
same text in various z in Fig. 12, proving the diversity of the
synthesis results.



He has bangs.

She is chubby.

He has wavy hair.

She has gray hair.
Figure 12. Diverse results when sampling four different z.

dataset method R-Precision ↑ FID ↓

CelebA-HQ Training Stage Regularization 0.604 17.56
Compositional Attribute Adjustment 0.625 17.46

CUB Training Stage Regularization 0.256 19.48
Compositional Attribute Adjustment 0.264 20.53

Table 8. Ablation study of Compositional Attribute Adjustment.
“Training Stage Regularization” stands for using attribute directions
to supervise the the sentence direction during the training stage,
which can be regarded as an alternative method to Compositional
Attribute Adjustment that uses attribute directions to adjust sentence
direction during the inference stage.

Results on CelebA-HQ’s standard split We also show
the results on the CelebA-HQ’s standard testing split, i.e.,
not the test split that we created for the evaluation of com-
positionality (Sec. 6.1), in Tab. 7. Most of the results are
better than the results on the new split (Tab. 1) because of the
overlap between train and test splits that allows the models
to cheat.

C. Ablation Studies of Identifying Attribute Di-
rections

We further conduct more ablation studies of identifying
attribute directions on CelebA-HQ dataset. To evaluate the
identified attribute directions, we train a ResNet-18 classi-
fier with the ground-truth attribute labels (i.e., not the labels
extracted from text) as the attribute classifier. We use this

Attribute Accuracy ↑
w/o Spatial Constraint 0.827
w/ Spatial Constraint 0.871

Table 9. Ablation study of Spatial Constraint for identifying at-
tribute directions on CelebA-HQ dataset.

margin Attribute Accuracy

0.1 0.577
0.5 0.761
1 0.871
5 0.881

10 0.875
20 0.873

Table 10. Ablation study on the margin (α) of Semantic Matching
Loss on CelebA-HQ dataset. The accuracy results are not sensitive
to the value of margin when α ≥ 1.

attribute classifier to evaluate the synthesized positive and
negative images generated from Attribute-to-Direction mod-
ule (Fig. 3). For the positive image, its attribute ground-truth
is positive. For the negative image, its attribute ground-truth
is negative. We compute Attribute Accuracy based on the
attribute classifier’s prediction and ground-truth. Higher
Attribute Accuracy indicates a more accurate attribute direc-
tion.

Spatial Constraint The results of the ablation study on
Spatial Constraint are shown in Tab. 9, which proves that
Spatial Constraint can help the Attribute-to-Direction mod-
ule find more accurate attribute directions by leveraging the
intended region from pseudo-ground-truth mask.

Margin of Semantic Matching Loss (α) We conduct the
ablation study on the margin (α) of Semantic Matching Loss
(Eq. (4)). The results in Tab. 10 show that the results are
converged when α ≥ 1. We choose α = 1 in the main
experiments.

Alternative to Spatial Constraint An alternative ap-
proach to improve disentanglement among different at-
tributes is encouraging different attribute directions to
be orthogonal with each other in the latent space [53].
Therefore, we create an alternative approach by minimiz-
ing

∑
i

∑
j

ai

||ai||2
T aj

||aj ||2 when training the Attribute-to-
Direction module. The results in Tab. 11 show that this alter-
native approach hurts the accuracy performance compared
with only using the Semantic Matching Loss. In contrast, our
Spatial Constraint can greatly improve the accuracy results.



He has blond hair.

She has double chin.

She has gray hair.

She is bald.

ControlGAN DAE-GAN TediGAN-A TediGAN-B Ours

Figure 13. More examples of synthesis results where the input text decribes underrepresented compositions of attribute on CelebA-HQ
dataset.

Attribute Accuracy

Semantic Matching Loss only 0.827
w/ min

∑
i

∑
j

ai

||ai||2
T aj

||aj ||2 0.809
w/ Spatial Constraint 0.871

Table 11. Comparison between Spatial Constraint and an alterna-
tive approach min

∑
i

∑
j

ai
||ai||2

T aj

||aj ||2
for disentanglement on

CelebA-HQ dataset. Spatial Constraint achieves better results.

Alternative to Semantic Matching Loss—Contrastive
Loss Since the Text-to-Direction module and Attribute-
to-Direction module share some similarity, one may wonder
if it is feasible to use the contrastive loss to train the Attribute-
to-Direction. To this end, we adapt our CLIP-guided Con-
trastive Loss for Attribute-to-Direction module by replacing
the text input with attribute input, which attracts the embed-
dings of paired synthesized image and attribute and repels
the embeddings of mismatched pairs.

The results of comparing this alternative method and Se-
mantic Matching Loss are shown in Tab. 12. The contrastive
loss achieves poorer performance for identifying attribute
directions. The reason is that we should not repel the em-
beddings mismatched (image, attribute) pairs. For example,
we should not repel the embedding of an “smiling” image
against “man” attribute when the random latent code z can
be used to synthesize a male face image. Therefore, our

Attribute Accuracy

Contrastive Loss + Spatial Constraint 0.669
Semantic Matching Loss + Spatial Constraint 0.871

Table 12. Ablation study of Semantic Matching Loss for identifying
attribute directions on CelebA-HQ dataset.

Semantic Matching Loss can identify the attribute directions
better since it does not repel the embeddings of mismatched
(image, attribute) pairs.

Local Direction vs. Global Direction Our Attribute-to-
Direction module predicts the attribute direction conditioned
on both input attribute and random latent code z. One may
wonder if conditioning on the random latent code is neces-
sary. Following the terms defined by Zhuang et al. [77], we
call the attribute direction conditioned on the random latent
code as “local direction,” and we name the attribute direc-
tion only conditioned on the attribute (i.e., not conditioned
on random latent code) as “global direction.” The results
comparing local direction and global direction are shown
in Tab. 13. The global direction, which predicts a single
direction for an attribute globally, achieves poor attribute
accuracy results. In contrast, our local direction method,
which takes the random latent code into the consideration,
can more accurately predict the attribute direction.



This person is wearing earrings. She has big 
lips, high cheekbones, arched eyebrows, bags 
under eyes, and big nose. She is smiling.

This young person has wavy hair, mustache, 
and sideburns.

Bird’s beak is small and brown head is a 
brownish color also wings tan and feet are 
brown and short.

This small bird has a two-tone yellow and 
brown breast, and a small head in 
comparison to it s body.

ControlGAN DAE-GAN TediGAN-A TediGAN-B StyleT2I-XDStyleT2I

(a) Text-to-Image Synthesis Results on CelebA-HQ

(b) Text-to-Image Synthesis Results on CUB

Figure 14. More examples of text-to-image synthesis results.

Attribute Accuracy

global direction 0.764
local direction (Ours) 0.871

Table 13. Ablation study of global direction vs. local direction for
identifying attribute directions on CelebA-HQ dataset.

D. More Qualitative Results
Underrepresented Compositions More examples of syn-
thesis results where the input texts describe underrepresented
compositions of attributes are shown in Fig. 13. Our method
can more accurately synthesize the image for underrepre-
sented attribute compositions with high image fidelity.

Text-to-Image Results More examples of text-to-image
synthesis results are shown in Fig. 14. Our method can
synthesize images conditioned on the text describing unseen
attribute compositions with better image-text alignment and
higher image quality.

Norm Penalty More examples of the ablation study on
norm penalty are shown in Fig. 15, which proves that norm
penalty can effectively improve the image quality.

Compositional Attribute Adjustment More examples of
the ablation study on Compositional Attribute Adjustment
(CAA) are shown in Fig. 16, which demonstrates that CAA
can automatically identify the wrong attribute predictions
and effectively correct them during the inference stage to
improve the compositionality.

w/o 
Norm Penalty

w/
Norm Penalty ground-truth

this brilliant red bird has black 
accents on wings and tail and a 
short, thick beak.

She has narrow eyes, high 
cheekbones, and mouth slightly 
open. She is wearing lipstick, and 
heavy makeup. She is smiling.

Figure 15. More examples of the ablation study on norm penalty.

She has rosy cheeks, 
narrow eyes, big lips, and 
big nose.

Adjusted Attribute:
she

before CAA after CAA

A bird with a white and 
black crown and orange 
bill.

Adjusted Attribute:
black crown

Figure 16. More examples of the ablation study on Compositional
Attribute Adjustment (CAA).

E. User Study
On each dataset, we randomly sample 20 sentences from

the testing split to synthesize the images for the user study.
We invite 12 participants to evaluate the image-text align-
ment and the image quality.

We request the participants to read a guideline before
conducting the user study. For evaluating the image-text



(a) User interface for ranking image-text alignment. (b) User interface for ranking image quality.

Figure 17. User interface for user study.

alignment on face images, our guideline clarifies that the
words like “woman,” “man,” “she,” “he” denote the visually
perceived gender, which does not imply one’s real gender
identity. Since participants may not be familiar with some
terms in the birds image domain, we provide Fig. 2 in [61],
an illustration of fine-grained bird part names (e.g., nape),
in the guideline of the user study to help participants better
understand the text.

We use Google Form to collect the user study results.
The user interface for the user study is shown in Fig. 17.
The method names are not shown in the user interface. In
each question, the order of images generated from different
methods is shuffled.

The user study in this paper follows the research protocol,
whose master study received the exempt determination from
Institutional Review Board (IRB).

F. Discussion

F.1. Limitations and Future Research Directions

We honestly list some limitations of our work and discuss
some promising future research directions.

First, our attribute extraction approach (Appendix A.3) is
limited by assuming that adjectives and nouns in the text can
imply the attribute, which cannot be generalized to texts de-
scribing more complex relations in the image. For example,
the text “the earring on the left is bigger than the earring
on the right,” describes a relative relation (e.g., “bigger”),
which cannot be expressed as an attribute.

Second, based on StyleGAN, StyleT2I focuses on syn-
thesizing find-grained images in face and bird domains,
where StyleGAN has shown a great capability of synthe-
sizing high-fidelity images. However, our initial experiment
finds that StyleGAN cannot synthesize high-quality com-

plex scene images from MS-COCO [7,33] dataset, which
limits our method to focus on fine-grained single-object im-
age domains, e.g., faces and birds. Future works can study
how to leverage pretrained scene image generators (e.g.,
SPADE [40]) to perform text-to-image synthesis.

Third, in terms of Spatial Constraint, the pseudo-ground-
truth masks for some images are not accurate, which in-
troduces label noises for Spatial Constraint. Future work
can leverage some recent semi-supervised methods to ob-
tain the pseudo-ground-truth mask for Spatial Constraint.
For example, by only annotating a few images, [74] uses
StyleGAN to synthesize high-quality images with pseudo-
ground-truth masks, which can be used as an alternative to
the weakly-supervised method [17] used in this work.

F.2. Potential Negative Societal Impacts

Since StyleT2I can synthesize high-fidelity images, a ma-
licious agent may use our model as a deepfake technology
for unintended usage. To mitigate this issue, we ask the
users to agree to the ethics terms when releasing the model.
Overall, StyleT2I improves the compositionality of text-to-
image synthesis, which can better synthesize images for text
containing underrepresented attribute compositions, e.g., “he
is wearing lipstick.” Therefore, we believe that StyleT2I con-
tributes to reducing the negative societal impact compared
with previous text-to-image synthesis methods.


