
Supplementary Material for
Subspace Adversarial Training

1. Detailed Sampling Strategy

We present a detailed sampling strategy of model check-
points for DLDR [6] in Tab. 2, where we consider the times
of uniform sampling in each epoch, the number of sampling
epochs, the total number of samplings, and the dimension
of the subspace extracted from the samplings. The general
sampling strategy is quite simple: we uniformly sample a
few checkpoints in every training epoch before the overfit-
ting occurs. For single-step AT, the exact time when catas-
trophic overfitting occurs may be slightly different for dif-
ferent runs. Our sampling strategy is a conservative and
robust one. We suggest sampling as more as model check-
points before the overfitting occurs to estimate the subspace
more accurately and to achieve better results. Note that the
total number of samplings t is small (around 200), and thus
the computational overhead on corresponding decomposi-
tion (a t × t matrix) is small. This explains why the com-
putational cost of the decomposition is negligible compared
to the total computational cost. A more delicate sampling
strategy design may improve the performance and could be
an interesting topic for future works.

Ablation study for the dimension d. We provide an ab-
lation study for the dimension of subspace in Fig. 1, where
we vary the dimension of subspace for Fast Sub-AT from
50 to 100 and record the best robust accuracy obtained in
corresponding subspaces. We observe that the best robust
accuracy varies very little across such a wide range of di-
mensions (<1%). Thus we conclude that our Sub-AT is ro-
bust to the exact choice of the dimension d.
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Figure 1. Ablation study for the dimension of subspace on CIFAR-
10. Fast Sub-AT achieves similar best robustness performance
across a wide range of dimensions. The robust accuracy is evalu-
ated under PGD-20 attack.

2. Additional Results with Auto-Attack

We further evaluate the performance of Sub-AT on miti-
gating robust overfitting in multi-step AT with Auto-Attack,
a stronger and more reliable attack proposed by Croce et
al. [3]. From the results in Tab. 1, we observe that indeed,
Sub-AT effectively mitigates the robust overfitting and con-
sistently improves the robust accuracy. Hence, training in
subspace genuinely overcomes the overfitting and improves
the model robustness rather than as a result of gradient
masking [1, 7].

Table 1. Robust accuracy of multi-step AT and Sub-AT on CIFAR-
10/100 against ℓ2 and ℓ∞ adversarial perturbations. The ro-
bust accuracy is evaluated under Auto-Attack [3]. Our Sub-AT
achieves consistent improvements on the robust accuracy while
effectively mitigating the robust overfitting. The best robustness
performances and the smallest difference between the best and the
final are marked in bold.

Dataset Norm Settings
Auto-Attack

Best Final Diff.

CIFAR-10
ℓ∞

AT 47.29 41.08 6.21
Sub-AT 48.37 47.88 0.49

ℓ2
AT 65.66 63.93 1.73

Sub-AT 66.99 67.15 -0.16

CIFAR-100
ℓ∞

AT 22.83 18.12 4.71
Sub-AT 23.89 23.83 0.06

ℓ2
AT 36.91 32.70 4.21

Sub-AT 38.14 37.84 0.30

3. Results on Tiny-ImageNet

The results on Tiny-ImageNet [4] is presented in Tab. 3,
where we use PreAct ResNet18 model [5] and train it for
100 epochs with learning rate decay at 50 and 80 follow-
ing [2]. Sub-AT is trained for 20 epochs with a constant
learning rate 1, accordingly. For single-step Fast AT, we
observe that the catastrophic overfitting occurs at the 17th
epoch, and thus we only sample 16 epochs for DLDR.
Even with such few samplings, we obtain an 18.79% single-
step robust accuracy, while standard PGD-10 AT achieves a
slightly better 19.84% robust accuracy, but with around 12x
training time overhead and, even worse, serious robust over-
fitting problem. Within the better subspace extracted from
PGD-10 AT, our Fast Sub-AT achieves 21.87% robust accu-
racy, which is significantly better than base PGD-10 AT and
also enjoys computational benefits.



Table 2. Detailed sampling strategy for DLDR. We report the times of uniformly sampling in each epoch of training, the number of
sampling epochs, the total number of samplings t, and the dimension of the subspace extracted from the samplings of parameters. Note
that there is an additional sampling on the parameter initialization as we start the Sub-AT from the initialization.

Type Datasets Method #Times/epoch #Epochs t #Dimension

Single-step

CIFAR-10 Fast AT 2 65 131 80
CIFAR-10 GradAlign 2 65 131 100
CIFAR-10 GAT 2 100 201 100

CIFAR-100 Fast AT 2 65 131 80
CIFAR-100 GradAlign 2 65 131 100
CIFAR-100 GAT 1 140 141 100

Tiny-ImageNet Fast AT 4 16 65 50

Multi-step
CIFAR-10 PGD-10 AT 2 100 201 120

CIFAR-100 PGD-10 AT 2 100 201 120
Tiny-ImageNet PGD-10 AT 4 50 201 120

Table 3. Results on Tiny-ImageNet. We use PreAct ResNet18 model and consider both single-step and multi-step AT. Sub-AT demonstrates
its superior performance in both robustness performance and computational overhead. The time consumption is evaluated on an Nvidia
Tesla V100.

Method Subspace Best Final TimeNatural PGD-20 Natural PGD-20

Single-step Fast AT – 28.79 11.90 42.54 0.00 3.5h
Fast Sub-AT (ϵ = 8/255) Fast AT 39.38 16.75 39.19 16.17 1.3h
Fast Sub-AT (ϵ = 12/255) Fast AT 38.11 18.52 38.306 18.13 1.3h
Fast Sub-AT (ϵ = 16/255) Fast AT 37.32 18.79 37.20 18.22 1.3h

Multi-step PGD-10 AT – 42.76 19.84 46.57 14.18 15.7h
PGD-10 Sub-AT PGD-10 AT 40.82 20.52 40.78 19.55 12.1h
PGD-10 AT (ϵ = 12/255) PGD-10 AT 40.88 21.42 42.27 21.41 8.6h
PGD-10 AT (ϵ = 16/255) PGD-10 AT 40.99 21.87 41.27 21.60 8.6h

Table 4. Results on multi-step PGD-10 AT with WideResNet-28-10 model against PGD-20 attack (ℓ∞ norm, ϵ = 8/255).

Dataset Settings Robust Accuracy Natural Accuracy
Best Final Diff. Best Final Diff.

CIFAR-10 AT 53.26 46.70 6.56 84.69 85.81 -1.12
Sub-AT 55.14 54.75 0.39 84.79 84.71 0.08

CIFAR-100 AT 29.44 23.26 6.18 57.64 56.08 1.56
Sub-AT 31.07 30.69 0.38 57.24 57.40 -0.16

4. Results on Wide-ResNet

We conduct further experiments on Wide-ResNet [8] ar-
chitectures. Specifically, we use the WideResNet-28-10
model and consider ℓ∞ adversarial perturbations with ra-
dius 8/255 on CIFAR-10 and CIFAR-100. From the results
in Tab. 4, we observe that similarly, robust overfitting can
be successfully mitigated by Sub-AT, meanwhile with sig-
nificant improvements in robustness. We achieve +1.88%
on CIFAR-10 and +1.63% on CIFAR-100, and successfully

control the robust accuracy gap (between the best and the
final) under 0.4%. Thus we conclude that Sub-AT can be
easily applied to other architectures and obtain similar en-
hancements in robustness.
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