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1. Introduction
This supplementary material provides the following in-

formation: Section 2 indicates detailed evaluation of our

proposed landmark detector on WFLW subsets. Section 3

presents another group of cross-dataset evaluation results.

Section 4 visualizes the deformable attention for each head.

Section 5 presents more landmark detection results to show

the advantage of our model. Section 6 presents some fail-

ure cases by our method for further improvement. All the

models in this material use default configuration.

2. Experiments on WFLW
WFLW [15] consists of various challenges, i.e., pose,

expression, illumination, makeup, occlusion and blur. We

conduct experiments on the full WFLW test set and six sub-

sets, and compare with SOTA methods to show the supe-

riority of our models. As presented in Table 1, DTLD+

and DTLD achieve the best and the second best separate-

ly, compared with other methods. Specifically, DTLD+ get-

s the lowest NME on WFLW-Full as well as the majority

of subsets, except “illumination” where DTLD shows the

lowest NME. DTLD+ improves greatly on the “expression”

subset, surpassing the second best (PIPNet-101 [8]) with a

relative increase of 8.3%, and the second best that adopts

ResNet-18 as backbone (PIPNet-18) by 14.0%. In the sub-

set of “occlusion”, the advantage is relatively small (0.4%
relative improve compared to the second best), indicating

the potential research direction for further improvement.

3. More Cross-dataset Evaluation
Here we conduct another group of cross-dataset evalu-

ation to prove the robustness of our model, following the

experimental setting in [9]. To be specific, we train DTLD

from scratch on the training data of 300W Split2, and eval-

uate it on 300W Split2 test data, Menpo frontal [5, 13, 17]
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and COFW68. There are 3837 images in 300W Split2 train

set and 600 images in test set. The 6679 near-frontal train-

ing images in Menpo 2D (denoted as Menpo frontal) are

adopted here for evaluation, as well as the 507 test images

in COFW68. Following [9], here we adopt NMEbox and

AUCbox as the evaluation metrics. NMEbox uses the geo-

metric mean of the width and height of the ground-truth

bounding box (
√

wbbox · hbbox) as the normalization distance

D. AUC (Area Under Curve) is computed as the area un-

der the cumulative distribution curve, up to a cutoff NME

value. The cumulative distribution curve is plotted by the

fraction of test images whose NME is less than or equal to

the specific NME value on the horizontal axis. Here we use

NMEbox and the cutoff value of 7%. The lower the NMEbox,

the higher the AUCbox, the better the performance. Exper-

imental results are presented in Table 2. Our DTLD with-

out any pretraining achieves the best detection accuracy on

300W Split2 test set and COFW68, even surpassing oth-

er methods pretrained on 300W-LP-2D [18]. On Menpo

frontal, our DTLD is still better than previous models with-

out pretraining.

4. Deformable Attention Visualization on
Multi-Heads

We visualize the sampling points and deformable atten-

tion weights for each head in Figure 1. Specifically, for

one head, we combine sampling points from different lev-

el of feature maps. The brighter the point, the greater the

weight. Figure 1 is from the last DTLD decoder layer. The

visualization illustrates intuitively that different heads will

pay attention to different directions on image features and

sampling points near the landmark to be detected gain more

attention.

5. Landmark Detection Visualization
We present more samples to show the landmark predic-

tion results of DTLD under different scenarios in WFLW

subsets, such as different occlusion proportions and region-
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Method Year Backbone
WFLW

Full Pose Expr. Illu. M.u. Occ. Blur

LAB [16] 2018 Hourglass 5.27 10.24 5.51 5.23 5.15 6.79 6.23
Wing [7] 2018 ResNet-50 4.99 8.43 5.21 4.88 5.26 6.21 5.81
DeCaFa [4] 2019 Cascaded U-Net 4.62 8.11 4.65 4.41 4.63 5.74 5.38
DAG [10] 2020 HRNet-W18 4.21 7.36 4.49 4.12 4.05 4.98 4.82

HRNet [12] 2019 HRNet-W18 4.60 7.94 4.85 4.55 4.29 5.44 5.42
AWing [14] 2019 Hourglass 4.36 7.38 4.58 4.32 4.27 5.19 4.96
AVS [11] 2019 ITN-CPM 4.39 8.42 4.68 4.24 4.37 5.60 4.86
PIPNet-18 [8] 2020 ResNet-18 4.57 8.02 4.73 4.39 4.38 5.66 5.25
PIPNet-101 [8] 2020 ResNet-101 4.31 7.51 4.44 4.19 4.02 5.36 5.02

DTLD 2021 ResNet-18 4.08 7.06 4.20 3.96 3.92 4.96 4.75
DTLD+ 2021 ResNet-18 4.05 7.06 4.07 4.02 3.83 4.96 4.74

Table 1. Comparison with state-of-the-art methods on WFLW (Full set and six subsets). The results are in NME (%). Our DTLD+ achieves

the best and DTLD achieves the second best in all sets with a simple ResNet-18 backbone.

Methods
NMEbox (%) (↓) AUC7

box (%) (↑)

300W Menpo COFW68 300W Menpo COFW68

SAN* [3, 6] 2.86 2.95 3.50 59.7 61.9 51.9

2D-FAN* [1] 2.32 2.16 2.95 66.5 69.0 57.5

Softlabel* [3] 2.32 2.27 2.92 66.6 67.4 57.9

KDN [2] 2.49 2.26 − 67.3 68.2 −
KDN* [2] 2.21 2.01 2.73 68.3 71.1 60.1

LUVLi [9] 2.24 2.18 2.75 68.3 70.1 60.8

LUVLi* [9] 2.10 2.04 2.57 70.2 71.9 63.4

DTLD(s) 2.05 2.10 2.47 70.9 71.8 65.0

Table 2. Another group of cross-dataset evaluation. DTLD(s) is our proposed DTLD model trained from scratch. The methods marked

with * are pretrained on 300W-LP-2D. Our DTLD exceeds previous models without pretraining and is even better than some models

pretrained on 300W-LP-2D.
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Figure 1. Visualizations of sampling points of the last DTLD de-

coder layer. The red cross denote the ground-truth, while others

dots show the sampling points with attention weights expressed by

colors. The brighter the point, the greater the weight. We combine

the sampling points from all feature maps for each head.

s, various facial expressions, make-up, poses and illumina-

tions, et al. Figure 2 indicates that our method can accu-

rately predict the facial landmarks in different situations,

even under extreme poses and makeup. The results also

prove that the structural information among landmarks is

Figure 3. Visualizations of some typical failures. Red represents

the ground truth, and cyan represents our predictions.

well learned by our method.

6. Failure Case Analysis

Although our model shows strong superiority on facial

landmark detection, it is still weak for face image with se-

vere occlusions, especially obscured by other people, as il-

lustrated in Figure 3. Specifically, 1) If the challenge (i.e.,

blurring, occlusion, etc.) causes a great uncertainty on face

boundary inference, our model may fail. 2) If the face to

be aligned is obscured by another face, our model has d-

ifficulty in distinguishing the target character, thus leading

to large errors. 3) The ambiguity of landmark annotations
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Figure 2. Typical samples from different WFLW subsets. Red denotes the ground truth, and cyan represents our predictions.

may lead to poor performance, especially for landmarks on

face boundary. For these weaknesses, a possible solution is

to make better use of the connections between landmarks to

infer the invisible part. We leave it as a future work.
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