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1. Architecture and Training Details

Architecture. In our model, the encoder and the decoder
use the same architecture as FuseFormer [5]. The chan-
nel dim C of the encoder and the decoder is set as 128. A
lightweight model SPyNet [7] is employed as our flow com-
pletion module for computational efficiency. To utilize the
learned flow prior in original SPyNet, we use pre-trained
weights to initialize this module. The architecture details of
the T-PatchGAN are identical to previous works [1, 5, 10].
The kernel size K and the group number G of deformable
convolution are set as 3 and 16, respectively. The number
of focal transformer blocks N is set as 8 and the embed-
ded dim of tokens Ce is set as 512. The embedded spatial
dimension M ×N is 20× 36. The size of partitioned sub-
window st×sh×sw is set to (Tl+Tnl)×5×9. At the end of
the content hallucination module, we use a soft composite
operator [5] to composite the embedded tokens to features,
which share the same spatial size as the original ones.

Training details. For training objectives, the weights of
Lrec, Ladv , and Lflow are 1, 10−2, and 1, respectively.
Taking the memory limitations of GPUs into account, we
resize all frames from videos into 432 × 240 for training,
evaluation, and test. During training, the numbers of local
(Tl) and non-local frames (Tnl) are 5 and 3, respectively.
Local frames are continuous clips, while non-local frames
are randomly sampled from videos for training. Follow-
ing STTN [10] and FuseFormer [5], during evaluation and
test, we use a sliding window with the size of 10 to get lo-
cal neighboring frames and uniformly sample the non-local
neighboring frames with a sampling rate of 10. We adopt
Adam optimizer with β1 = 0 and β2 = 0.99. The final
model is trained for 500K iterations, and the initial learning
rate is set as 0.0001 for all modules and reduced by the fac-
tor of 10 at 400K iteration. In our ablation studies, we train
the model for 250K iterations. We use 8 NVIDIA Tesla
V100 GPUs for training and the batch size is set as 8. Our
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code is available 1 for reproducibility.

2. More Experiments
2.1. Completing flows in a offline manner.

To verify the effectiveness of online flow completion, we
prepare completed flows using the FGVC [3] flow comple-
tion module in an offline manner. We then retrain a model
with the FGVC completed flows. The PSNR value of this
model is slightly higher than our end-to-end setting (32.38
vs. 32.35 (dB)). However, the inference speed is much
slower than ours (1.21 vs. 0.16 (s/frame)).

2.2. Taking a deeper look to flow-guided feature
propagation module

To further investigate the effectiveness of the feature
propagation module, we visualize averaged local neighbor-
ing features with the temporal size of 5 before conducting
content hallucination in Fig. 1. The four cases in Fig. 1 cor-
respond to the four variants in the Tab. 3 of our main paper.
For the model without feature propagation (Fig. 1(a)), obvi-
ously, we can see that corrupted regions from all frames still
exist in these features, further restricting the performance of
content hallucination. For the model only using flow-based
warping (Fig. 1(b)) or deformable convolution-based warp-
ing (Fig. 1(c)), corrupted regions are filled with the con-
tents warped from adjacent frames. And the deformable
convolution-based warping can generate smoother content
than flow-based one due to more sampling feature points.
However, especially for the last two temporal features (last
two columns in Fig. 1), the regions filled by the model with-
out flow guidance have more distinct boundaries in contrast
to flow-based warping, which implies that less faithful con-
tent are propagated without motion information. Through
adopting deformable convolution with flow guidance, the
final propagation module (Fig. 1(d)) fills the holes with the
most reasonable and natural content among all cases. This
is a promising demonstration of the mutually beneficial re-
lationship between deformable offsets and completed flow
fields.

1https://github.com/MCG-NKU/E2FGVI
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Figure 1: Visualization of the frame-wise average features before feeding into the content hallucination stage under different
experimental settings: (a) without flow-guided feature propagation, (b) flow-guided feature propagation without deformable
convolution (Eq. 3 of the main paper), (c) feature propagation without flow guidance, and (d) final flow-guided feature
propagation module with the assistance of both flow fields and deformable convolution. (Zoom-in for best view)

2.3. Study of the hallucination ability

To purely evaluate the hallucination ability of our
method, we first pre-fill the pixels which can be traced by
flow fields [2]. The remaining unfill pixels are thus most
likely not visible in other video frames. We then feed the
pre-filled videos to an image inpainting model [9] and our
model, respectively. Our hallucinated result has a much
larger PSNR value than the image inpainting model on
DAVIS dataset (31.74 vs. 30.80 (dB)).

Table 1: Parameters comparisons. FuseFormer* denotes a
larger version of original FuseFormer.

FuseFormer [5] FuseFormer* E2FGVI
Params. (M) 36.6 41.6 41.8
PSNR/SSIM 31.74/0.9662 31.91/0.9669 32.35/0.9688

2.4. Parameter comparison

We report the parameters in Tab. 1. Although our method
consumes ∼14% more parameters than the SOTA method
(i.e., FuseFormer [5]), it achieves a great trade-off between
performance and computational complexity among other
methods (see Tab. 1). For further comparison, we add resid-
ual blocks in FuseFormer to achieve similar parameters with
ours. Our method still performs better than the larger ver-
sion of FuseFormer.

2.5. More Qualitative Results

In this section, we provide additional visual results on
two benchmark datasets, including YouTube-VOS [8] and
DAVIS [6], to further show the superiority of the proposed
E2FGVI. The reconstruction results of CAP [4], FGVC [2],
and FuseFormer [5] are presented for comparisons. As
shown in Fig. 2-5, our E2FGVI can generate more faithful
textural and structural information and more coherent con-
tents in masked regions than other methods. Our demo is
shown in our project page.
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Figure 2: Qualitative video completion results on YouTube-VOS [8].
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Figure 3: Qualitative video completion results on YouTube-VOS [8].
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Figure 4: Qualitative object removal results on DAVIS [6].
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Figure 5: Qualitative video completion results on DAVIS [6].
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