
I The influences of hyper-parameter λ for our loss
As shown in Tab.5, the network is difficult to converge if λ is too small (concentrated loss takes a dominant role) and there

will be a big performance degradation if λ is too large (the unimodal loss takes a dominant role). Within a long reasonable
range, our method performs stably.

Table 5. The influences of hyper-parameter λ for our loss.

Threshold λ 1e-1 1e1 1e2 1e3 2e3 1e4
MORPH II NaN 1.92 1.88 1.86 1.88 3.24
AFLW2000 NaN 4.21 4.26 4.13 4.11 6.12

BIWI NaN 3.67 3.71 3.57 3.61 5.75

II Demonstration for softmax+mean & variance loss superior to unimodal+mean & variance loss
The Mean-Variance loss [22] can be formulated as

Lm−v = Ls + λ1Lm + λ2Lv (21)

=
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where Ls is the softmax loss.
We first demonstrate that it is hard for the network to directly optimize mean loss and variance loss without softmax loss.

Based on Eq. 2 and derivation process in [22], the gradient of Lm w.r.t. zi,j can be computed as

∂Lm

∂zi,j
=

ŷi − yi
N

pi,j(j − ŷi). (23)

According to the Eq. 23 , as analyzed in [22], for an estimated distribution with mean value ŷi, if ŷi < yi, the network will
be updated to increase the probabilities of the classes j(j > ŷi) via their negative gradients, and decrease the probability of
those classes j(j < ŷi) via their positive gradients. In this way, the mean value of the estimated distribution will be increased,
and becomes closer to yi.

The gradient of Lv w.r.t. zi,j can be computed as
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The gradient in Eq. 24 has the following properties:
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As analyzed in [22], Eq. 25 shows that, the network will be updated to increase the probabilities of the classes j close to
ŷi(j ∈ (ŷi −

√
vi, ŷi +

√
vi)) via their negative gradients. On the contrary, Eq. 26 shows that the network will be updated to

decrease the probabilities of the classes j far away from ŷi(j ∈ [1, ŷi −
√
vi) ∪ (mi +

√
vi, C]) via their positive gradients.

Base on analysis above, it can be observed that

if j ∈ (ŷi −
√
vi, ŷi) and ŷi < yi

then
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In the case of Eq. 27, let | ∂Lv

∂zi,j
| > | ∂Lm

∂zi,j
| (λ1 and λ2 are omitted for demonstration)

⇒ vi − (j − ŷi)
2 > (ŷi − yi)(j − ŷi),

⇒ vi > (j − yi)(j − ŷi).
(28)

According to the Eq. 28, when vi > (j− yi)(j− ŷi), the absolute value of ∂Lv

∂zi,j
is larger than that of ∂Lm

∂zi,j
. Consequently,

the network will be updated to increase the probabilities of the classes j(j ∈ (ŷi −
√
vi, ŷi) which are far from the ground-

truth yi. That is to say, when large fluctuation appears at the early stage of training [22] which meets the such condition, the
probabilities of the classes far from the ground-truth yi will be increased and it is against principle I. It accounts for that it is
hard to optimize the network with the mean & variance loss only. A typical example corresponding to this condition is given
in Fig. 7.
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Figure 7. A typical example of distribution at the early stage of training.

When adding the softmax loss, as we all know, the gradient of Ls w.r.t. zi,j can be computed as

∂Ls

∂zi,j
= pi,j − yi,j (29)

where yi,j is the indicator whether the instance i belongs to class j. If instance i belongs to class j, yi,j = 1, otherwise,
yi,j = 0. According to the Eq. 29, it can be seen that the network will always be updated to increase the probability of the
class yi via their negative gradients. It accounts for that softmax loss can promote the network to converge with the mean &
variance loss.

When adding the unimodal loss, the gradient of Luni w.r.t. zi,j can be computed as
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(30)

the gradient of Luni w.r.t. zi,j+1 can be computed as
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(31)

According to the Eq. 30 and 31, it can be seen that our unimodal loss aims at correcting the ordinal relationship when two
neighboring probabilities are ranked by mistake instead of directly maxmizing the probability of the class yi like softmax
loss. So, compared with the combination of softmax and mean loss & variance loss, the combination of unimodal and mean
loss & variance loss gets the poorer performance.



III Ablation study about single unimodal loss and single concentrated loss.
Without the unimodal loss, the network is difficult to converge. The MeanVariance loss encounters the similar problem

without softmax loss as mentioned by the paper [22] in Sec. 3.2. Therefore, in ablation as shown in Tab. 6 of main script, only
our concentrated loss along with softmax loss or unimodal loss and MeanVariance loss along with softmax loss or unimodal
loss are campared. Without the concentrated loss, although the network can converge. However, with only the unimodal loss,
different distributions (shown as the three samples in Fig. 8) may have the same loss value, but very distinct shapes, which
may make the network converge to a bad local minimum. Its age estimation error is larger than 5 on MORPH II, which
verifies this.

Table 6. The results for the single unimodal loss and single concentrated loss.

Combinations Benchmarks
Auxiliary Primary MORPH II AFLW2000 BIWI

Softmax Concentrated 1.92 4.25 3.61
Unimodal Concentrated 1.86 4.13 3.57
Softmax Mean & Variance 2.01 4.36 4.01

Unimodal Mean & Variance 3.30 4.53 4.39
Unimodal - ≥ 5 ≥ 7 ≥ 7

- Concentrated NaN NaN NaN
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Figure 8. Typical distribution examples.


