
1. Supplementary

Method ImageNet-LT
Many Medium Few Overall

Mixup [8] 67.3 41.0 11.1 46.3
Lifted Loss [6] 35.8 30.4 17.9 30.8
OLTR [5] 43.2 35.1 18.5 35.6
LWS [3] 60.2 47.2 30.3 49.9
TDE† [7] 62.5 47.8 29.9 51.0
τ -norm [3] 59.1 46.9 30.7 49.4
τ -norm + ELP-SR 62.7 47.8 33.6 51.6

Table 1. Comparison on ImageNet-LT. † denotes that the results
are re-implemented by the author-provided code.

1.1. Long-tailed Visual Recognition on ImageNet-
LT

We provide results on ImageNet-LT as shown in Table 1
additionally. ImageNet-LT, a sub-set from ImageNet [4],
is a standard benchmark in the long-tailed recognition task
from [5]. The largest ‘head’ class in ImageNet-LT contains
1280 images, and the smallest ‘tail’ class possesses only
five images. This formulates a typical long-tailed problem
and leads to a challenging benchmark. We compare meth-
ods in four conditions: (1). Many: the many-shot condition
in which more than 100 samples per class; (2). Medium:
the medium-shot condition in which 20 to 100 samples per
class; (3). Few: the few-shot condition in which the num-
ber of samples per class is less than 20; (4). Overall: the
overall dataset. We report top-1 accuracy of all conditions
for various methods in Table 1.

After applying ELP-SR in training, 2.2% improvements
occur based on [3], which is significant in this benchmark.
Besides, without bells and whistles, our results are compet-
itive to the recent method [7]. ELP-SR does not introduce
any overhead in testing and even does not specifically con-
sider the long-tail distribution. Improvements indicate that
ELP-SR guides the networks to become more generalized.

1.2. Ablation for Fine-grained Visual Recognition

More ablation studies are provided for CAR and AIR
datasets in fine-grained recognition as shown in Table 2.
Similar to CUB dataset, the best performances occur when
γ = 3 in both datasets. Meanwhile, the value of I should
also be proper. Too large or too small values of I may
slightly hinder the improvements from ELP-SR.

Besides, we also applied ELP with PMG [1] on CUB.
The original PMG achieves the accuracy of 88.9% using a
single branch. PMG with ELP achieves 89.3%, outperform-
ing PMG by 0.4%. This reveals that ELP provides consis-
tent improvements on complex structures.
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Figure 1. Visualization for cases that are correctly classified by
ours but misclassified by the baseline method.

1.3. Visualization

Three kinds of visualized comparisons are provided. The
first comparison is for samples. The influences of probabil-
ities are presented with corresponding samples. The sec-
ond comparison is for features. The intuitive improvements
from features are revealed. The final comparison is for the
weights of classifiers. The changing of classifiers’ weights
is shown.

Visualization for Samples: We showcase some exam-
ples in the testing set of ImageNet-1K. Based on ResNet-50,
examples of the baseline method with or without ELP-SR
are presented in Fig. 1. To compare the probabilities from
baseline, we train the ELP classifier with baseline features
but do not leverage ELP-SR to the training procedure.

We present the probabilities for the ground truth classes
in the main classifier (pc) and the ELP classifier (qc) in base-
line and ours, respectively. In comparison, most pc values
in the baseline are larger than qc, revealing that the main
classifier of baseline may overfit. Though the features are
not discriminative enough and achieve relatively lower con-
fidences from the ELP classifier, the main classifier presents
higher probabilities. Moreover, our qc values are larger than
the baseline, reflecting that our features are more discrimi-
native and easily classified by the simple ELP classifier.

Visualization for Features: We further provide the vi-
sualization for features to directly reveal the improvements
from ELP-SR. We randomly sample 10 classes from CUB
every time, apply PCA [2] to reduce the dimensions, and
visualize them as in Fig. 2. Every column in Fig. 2 indi-
cates the same classes sampled from CUB. The visualiza-
tions show that our method leads the features to become
more discriminative.

Visualization for Classifiers’ Weights: We visualized
the classifiers’ weights using tSNE. As shown in Figure 3,
we show the distributions of classifiers after 1, 100, and 200
epochs. In the main classifier, the margin between classes



Parameter CAR AIR
I = 1 I = 2 I = 3 I = 4 I = 5 I = 1 I = 2 I = 3 I = 4 I = 5

γ = 1 93.8 93.6 94.0 93.6 93.2 91.2 92.3 92.0 91.6 91.5
γ = 2 93.9 94.2 94.0 93.7 93.3 92.5 92.2 91.5 91.5 91.2
γ = 3 93.8 94.2 93.9 93.5 93.3 92.7 91.3 92.0 91.7 91.5
γ = 4 93.8 94.2 94.1 93.6 93.1 91.6 92.2 92.1 91.5 91.2

Table 2. Ablation of parameters on CAR and AIR.
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Figure 2. Visualization for features. Every column presents the same set of classes randomly sampled from the CUB dataset. The first raw
is for thr baseline method, and the second raw is ours.
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Figure 3. Visualization for classifiers’ weights in CUB. Every point indicates the weights for the corresponding category in the classifier.
Every column presents the weights in the same epoch. We visualize the weights after the 1st, 100th, and 200th epochs. The first raw is for
the weights of the main classifier, and the second raw is the ELP classifier.

becomes more recognizable gradually. In the ELP classifier, the m argins are not as recognizable as the main classifier,



which indicates the ELP classifier can not overfit. Mean-
while, the weights from the ELP classifier become more dis-
criminative after plenty of training steps. This phenomenon
also reflects that the network achieves better immediate suit-
ability with ELP.

2. Discussions for Limitation and Impact
Though ELP provides general improvements in recogni-

tion, the extensions for other tasks like regression, genera-
tion, etc., may be challenging. Since ELP needs to reflect
simplicity, it is difficult for ELP to directly regress a par-
ticular value or fit a complex feature space. Besides, our
method may also have a potential negative impact. Adver-
sarial attacks targeting the ELP may significantly affect the
model training. Moreover, since ELP reflects some prop-
erties of features in training, even if the backbone model
is completely encapsulated and unavailable, the ELP layer
may disclose information of training data.

References
[1] Ruoyi Du, Dongliang Chang, Ayan Kumar Bhunia, Jiyang

Xie, Yi-Zhe Song, Zhanyu Ma, and Jun Guo. Fine-grained
visual classification via progressive multi-granularity training
of jigsaw patches. In European Conference on Computer Vi-
sion, 2020. 1

[2] Karl Pearson F.R.S. Liii. on lines and planes of closest
fit to systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901. 1

[3] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan,
Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decoupling
representation and classifier for long-tailed recognition. In
International Conference on Learning Representations, 2020.
1

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017. 1

[5] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Bo-
qing Gong, and Stella X. Yu. Large-scale long-tailed recog-
nition in an open world. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 1

[6] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4004–4012, 2016.
1

[7] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-
tailed classification by keeping the good and removing the bad
momentum causal effect. arXiv preprint arXiv:2009.12991,
2020. 1

[8] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David
Lopez-Paz. mixup: Beyond empirical risk minimization.
arXiv preprint arXiv:1710.09412, 2017. 1


	. Supplementary
	. Long-tailed Visual Recognition on ImageNet-LT
	. Ablation for Fine-grained Visual Recognition
	. Visualization

	. Discussions for Limitation and Impact

