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In this supplementary file, we provide the following materials:

• More visual comparisons on SISR with synthetic degradation under scaling factor 4× (referring to Section 4.2 in the
main paper);

• More visual comparisons on real-world SISR under scaling factor 4× (referring to Section 4.3 in the main paper);

• Quantitative comparisons on SISR with synthetic degradation under scaling factor 2× (referring to Section 4.2 in the
main paper).

1. More Visual Comparisons of SISR on Images with Synthetic Degradation
We first show the visual comparisons of 4× SISR on images with bicubic degradation by using three backbones. In

specific, Figure 1 compares the methods with light-weight backbone. Figure 2 compares the RRDB-based methods (see also
Figure 7 in the main paper), and Figure 3 compares the SwinIR-based ones. Consistent observations with the main paper can
be made from these visual comparisons, where the proposed LDL inhibits the visual artifacts and simultaneously recovers
richer and realistic details. This validates the generalization capability of the proposed LDL to different types of backbones.

2. More Visual Comparisons of SISR on Real-World Images
We then show the visual comparisons of 4× SISR on real-world low-resolution images. Following the same comparison

strategy as in the main paper, we first train a baseline model by using a specific backbone network (i.e., SRResNet, RRDB or
SwinIR) with the degradation model of RealESRGAN [4], and then apply the proposed Lartif loss to the baseline to train the
LDL model. The BSRGAN [8] method is also compared if the corresponding official model is released.

Figure 4 compares the GAN-SR methods with SRResNet backbone, Figure 5 compares the RRDB-based methods and
Figure 6 compares the SwinIR-based ones. As can be seen, the proposed LDL improves the SISR image quality over
competing methods. It suppresses significantly the artifacts caused by the complicated and unknown degradation in real-
world SISR tasks. This also demonstrates the generalization performance of our method to real-world SISR tasks.

3. More Quantitative Comparisons for 2× SISR
To validate the effectiveness of our method in generalizing to different scaling factors, we further conduct experiments on

2× SISR using the three backbones (SRResNet, RRDB and SwinIR), and report the results in Table 1. Since most of the
existing GAN-SR methods [1,3,4,6] do not train the 2× SISR models, we train three baseline models using SRResNet, RRDB
and SwinIR as backbone for comparison. As can be seen from Table 1, the proposed LDL achieves consistent improvement
on most benchmarks in terms of both perceptual quality (LPIPS, DISTS and FID) and reconstruction accuracy (PSNR and
SSIM). This demonstrates the effectiveness of our LDL in generalizing to different scaling factors.

*Equal contribution.
†This work is supported by the Hong Kong RGC RIF grant (R5001-18).
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(a) HR (c) SFTGAN (d) SRGAN (e) SRResNet+LDL(b) Bicubic

Figure 1. Visual comparison among light-weight GAN-SR methods, including SFTGAN [5], SRGAN [1] and our SRResNet+LDL, under
the scaling factor of 4× with bicubic degradation. Here, both SRGAN and our SRResNet+LDL use SRResNet as the backbone network,
and SFTGAN has similar magnitude of parameters in its restoration module. As can be seen, our method achieves clear improvement in
reconstructing realistic details. For example, the regular patterns of buildings in the 1st, 2nd and 4th rows are better restored by our method
compared to SFTGAN and SRGAN. The textures in the 3rd (feathers) and the last (text) row are more continuous and sharp. Besides, our
method has clear advantages in inhibiting artifacts. For example, in the second last row, the surface of the building in our result is cleaner
than SFTGAN.
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(a) HR (b) Bicubic (c) ESRGAN (d) USRGAN

(e) SPSR (f) SPSR (DF2K) (g) RRDB+LDL (DF2K) (h) RRDB+LDL (DF2K, EMA)

(a) HR (b) Bicubic (c) ESRGAN (d) USRGAN

(e) SPSR (f) SPSR (DF2K) (g) RRDB+LDL (DF2K) (h) RRDB+LDL (DF2K, EMA)

(a) HR (b) Bicubic (c) ESRGAN (d) USRGAN

(e) SPSR (f) SPSR (DF2K) (g) RRDB+LDL (DF2K) (h) RRDB+LDL (DF2K, EMA)

Figure 2. Visual comparison among GAN-SR methods that use RRDB as backbone, including ESRGAN [6], USRGAN [7], SPSR [3]
and our RRDB+LDL, under the scaling factor of 4× with bicubic degradation. In (e), we employ the officially released model of SPSR
that is trained on DIV2K dataset. In (f), we train the SPSR on the DF2K dataset using the officially released code. In (g) and (h), we
train our method on DF2K dataset and visualize the results of models Ψ and ΨEMA, respectively. As can be seen, our method can restore
more realistic details than others, e.g., the regular patters in the last example. Besides, our method can inhibit the visual artifacts such as
the overshoot pixels in the first and second examples and the structural distortion in the last one. Both models Ψ and ΨEMA achieve clear
improvement over the existing methods.
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(a) HR (b) Bicubic (c) SwinIR+ℒ!"# (d) SwinIR+LDL

Figure 3. Visual comparison between SwinIR [2]+LGAN and our SwinIR+LDL, under the scaling factor of 4× with bicubic degradation.
As can be seen, SwinIR+LGAN introduces artifacts of similar patterns on texture regions like the sands in the 1st row and the twigs and
leaves in the 2nd and 4th rows. It may also include overshoot artifacts along with the sharp edges as shown in the second last row. In
contrast, our SwinIR+LDL inhibits these artifacts, thanks to the explicit discrimination and penalty on these artifact pixels. Besides, our
method demonstrates clear advantages in reconstructing realistic details, especially on regular patterns such as the examples in the 3rd and
the last row.
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(a) Bicubic (b) SRResNet+RealESRGAN (c) SRResNet+RealESRGAN+LDL

Figure 4. Visual comparisons on 4× real-world image super-resolution using SRResNet as backbone. In (b), we train a baseline by using
SRResNet as backbone with the degradation model of RealESRGAN [4]. In (c), we apply our Lartif loss to the baseline in (b) while keeping
other settings unchanged. As can be seen, the proposed LDL method reproduces richer details, such as twigs and the pattern of buildings,
compared to the baseline one.
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(a) Bicubic (b) BSRGAN (c) RealESRGAN (d) RealESRGAN+LDL

Figure 5. Visual comparison on 4× real-world image super-resolution using RRDB as backbone. The results of BSRGAN [8] are shown
in (b) and the results of RealESRGAN [4] are shown in (c). In (d), we apply our Lartif loss to the baseline (c) while keeping other settings
unchanged. As can be seen, our LDL method reconstructs richer and sharper details, such as chairs, trees and the regular pattern of
buildings compared to the BSRGAN and RealESRGAN.
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(a) Bicubic (b) SwinIR+BSRGAN (c) SwinIR+RealESRGAN (d) SwinIR+RealESRGAN+LDL

Figure 6. Visual comparison on 4× real-world image super-resolution using the SwinIR as backbone. In (c), we train a baseline by using
SwinIR [2] as backbone with the degradation model of RealESRGAN [4]. In (d), we apply our Lartif loss to the baseline (c) while keeping
other settings unchanged. As the authors of SwinIR released the model by combining the BSRGAN degradation model with the SwinIR
backbone, we also show its results in (b). As can be seen in the first row, our LDL inhibits the artifacts robustly. In the third row, we can see
that (b) introduces much artifacts on the surfaces of the building, while (c) is free of artifacts but it is blurry and non-realistic. In contrast,
our LDL not only inhibits the artifacts but also reproduces sharp and realistic details.
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Table 1. Quantitative comparison on 2× SISR with bicubic degradation using three backbones. Since most of the existing GAN-SR
methods do not train the 2× SISR models, we train three baseline models (SRResNet, RRDB and SwinIR) using publicly available codes.
We then apply the proposed Lartif loss to the respective baselines and train with the same setting. Three groups of comparisons are made,
i.e., SRResNet backbone for the first 2 columns, RRDB for the middle 2, and SwinIR for the last 2. The best results of each group are
highlighted in bold. ↑ and ↓ mean that the larger or smaller score is better, respectively. All methods are trained on DF2K dataset. As can
be seen, our proposed LDL scheme improves both the perceptual quality (LPIPS, DISTS, FID) and reconstruction accuracy (PSNR, SSIM)
on most benchmarks for all the three backbones. Consistent observations with the experiments of 4× SISR can be made, and this validates
the effectiveness of the proposed LDL in improving the SISR performance across different scaling factors.

Metrics Benchmarks SRGAN SRResNet+LDL ESRGAN RRDB+LDL SwinIR+LGAN SwinIR+LDL

Training Dataset DF2K DF2K DF2K DF2K DF2K DF2K

LPIPS ↓

Set5 0.0168 0.0181 0.0155 0.0157 0.0124 0.0139
Set14 0.0386 0.0379 0.0355 0.0355 0.0290 0.0287
Manga109 0.0115 0.0103 0.0115 0.0116 0.0082 0.0080
General100 0.0192 0.0186 0.0166 0.0166 0.0142 0.0140
Urban100 0.0371 0.0347 0.0285 0.0284 0.0234 0.0224
DIV2K100 0.0311 0.0306 0.0261 0.0260 0.0236 0.0227

DISTS ↓

Set5 0.0383 0.0391 0.0352 0.0366 0.0314 0.0298
Set14 0.0410 0.0405 0.0387 0.0399 0.0336 0.0334
Manga109 0.0104 0.0097 0.0095 0.0094 0.0078 0.0072
General100 0.0302 0.0295 0.0273 0.0269 0.0243 0.0235
Urban100 0.0355 0.0340 0.0295 0.0297 0.0253 0.0242
DIV2K100 0.0182 0.0174 0.0142 0.0143 0.0125 0.0119

FID ↓

Set5 8.917 7.318 7.143 6.652 7.164 6.533
Set14 16.896 16.359 17.291 15.261 10.725 12.618
Manga109 3.394 3.088 3.087 2.975 2.647 2.432
General100 6.028 5.844 5.174 5.421 4.851 4.711
Urban100 18.032 18.363 17.417 17.429 17.171 17.166
DIV2K100 5.085 5.084 4.856 4.775 4.387 4.209

PSNR ↑

Set5 36.153 36.544 36.242 36.302 36.503 36.749
Set14 32.089 32.536 32.173 32.361 32.791 33.333
Manga109 36.461 37.237 37.442 37.462 37.932 38.412
General100 36.156 36.688 36.703 36.745 37.031 37.376
Urban100 30.261 30.984 31.069 31.119 32.098 32.567
DIV2K100 33.948 34.510 34.237 34.312 34.682 35.054

SSIM ↑

Set5 0.9419 0.9444 0.9417 0.9423 0.9418 0.9448
Set14 0.8853 0.8913 0.8895 0.8910 0.8925 0.9006
Manga109 0.9622 0.9663 0.9677 0.9679 0.9681 0.9708
General100 0.9405 0.9444 0.9442 0.9450 0.9460 0.9495
Urban100 0.8993 0.9073 0.9094 0.9104 0.9198 0.9247
DIV2K100 0.9169 0.9218 0.9181 0.9191 0.9233 0.9274
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