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A. Pseudocode of the GS sampler

A pseudocode of the GS sampler is shown in Algorithm
1.

Algorithm 1: Graph Sampler
Input: Data source D, feature extractor f , pairwise

distance function d, batch size B, number of
instances per class K.

Output: Sample iterator of the dataset D.
Initialization: pids: list of all class IDs;
index dict: dictionary of list containing all sample
indices of each class.

Procedure:
index = []
for p in pids:

index.append(random.choice(index dict[p],
size=1)) # randomly select one sample per class
dataset = D(index) # construct a small sub-dataset
X = f (dataset) # extract features
dist = d(X, X) # calculate pairwise distance
dist[i,i] = Inf # ignore the diagonal elements
P = B / K # number of classes in a mini batch
topk index = topk(-dist, size=P-1) # find nearest
neighboring classes
index = []
for p in shuffle(pids):

index.extend(random.choice(index dict[p],
size=K)) # randomly select K samples per class

for k in topk index[p]:
index.extend(random.choice(index dict[k],

size=K)) # randomly select K samples per class
Return: iter(index)

*Shengcai Liao is the corresponding author.

B. Alternative Loss Function and Analysis

B.1. Binary Cross Entropy Loss

Note that the batch hard triplet loss (Eq. (1) in the main
paper) is usually used as an auxiliary to the classification
loss, but not alone, in person re-identification. This is prob-
ably because random samplers including PK cannot provide
informative mini batches for OHEM to mine, which makes
Eq. (1) very small or even zero, and so the learning is not
efficient. In contrast, with the proposed GS sampler, we
prove that the OHEM triplet loss works well by itself with
K = 2. We use this loss function alone because, as moti-
vated in the main paper, we aim at removing classification
layers for large-scale metric learning.

However, note that the GS sampler already provides al-
most the hardest mini batches, and the batch hard triplet
loss further finds the hardest triplets within a mini batch for
training. As a result, the model may suffer optimization dif-
ficulty, which in turn may impact convergence during train-
ing. In practice, we find that limiting K = 2 alleviates
this problem significantly, while K > 2 usually makes the
learning not able to converge.

Alternatively, pairwise verification or binary classifica-
tion is another solution [3, 9] for pairwise matching or met-
ric learning within mini batches. Specifically, we apply QA-
Conv to compute similarity values between a pair of images,
and formulate a pairwise verification or binary classifica-
tion problem in mini-batch based learning. Accordingly,
we compute the binary cross entropy loss as follows.

ℓ(θ) = − 1

B

B∑
i=1

∑
j ̸=i

yij log(pij(θ))+(1−yij)log(1−pij(θ)),

(A)
where B is the mini-batch size, θ is the network parame-
ter, pij ∈ [0, 1] is the QAConv similarity indicating binary
classification probability, and yij = 1 indicates a positive
pair, while a negative pair otherwise. By default, we choose
B = 64 and K = 4 for this loss.
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Train Method CUHK03 Market MSMT17
R1 mAP R1 mAP R1 mAP

Market Binary 16.4 15.7 - - 41.2 15.0
Triplet 19.1 18.1 - - 45.9 17.2

MSMT Binary 20.0 19.2 75.1 46.7 - -
Triplet 20.9 20.6 79.1 49.5 - -

MS-all Binary 27.2 27.1 80.6 55.6 - -
Triplet 27.6 28.0 82.4 56.9 - -

RP Binary 14.8 13.4 74.0 43.8 42.4 14.4
Triplet 18.4 16.1 76.7 46.7 45.1 15.5

Table A. Comparison of loss functions. Binary: binary cross en-
tropy loss. Triplet: hard triplet loss. Market: Market-1501 dataset.
MSMT: MSMT17 dataset. MS-all: MSMT17 (all). RP: RandPer-
son dataset.

B.2. Experimental Comparison

Table A shows a comparison between the hard triplet
loss and the binary cross entropy loss for QAConv-GS. Re-
sults shown in the table indicate that, the hard triplet loss
performs better than the binary cross entropy loss for all
datasets, thanks to OHEM which further mines hard exam-
ples within mini batches provided by GS. However, the hard
triplet loss used alone in the proposed pipeline is sensitive to
K values as discussed. In contrast, the binary cross entropy
loss is a more stable alternative, working well with differ-
ent B and K values. This will be analyzed in the following
subsection.

B.3. Parameter analysis

When the binary cross entropy loss is applied, in Fig. A,
we show the performance with different parameter config-
urations of the GS sampler, trained on Market-1501. We
observe that for the batch size (Fig. A (a)), generally the
accuracy increases with the increasing batch size (thus in-
creasing P ), but saturates at about 64. It is understood that
mini batches with larger batch size provides more compre-
hensive data for learning, however, at the cost of enlarged
computation time, recalling that the number of iterations
per epoch is fixed as C for the GS sampler. For example,
with B = 64, the training of QAConv-GS on Market-1501
is about 0.68 hours on a single V100 GPU. However, this
is about 1.32 hours with B = 128 for training the same
epochs.

Next, we evaluate the influence of K under fixed B =
64, as shown in Fig. A (b). Interestingly, larger K leads to
gradually better performance on the CUHK03-NP, however,
it degrades the performance significantly on MSMT17. It
appears that K = 4 is a reasonable trade-off.

Since the hard triplet loss performs better, in the follow-
ing, by default we still use this loss.

(a) Effect of batch size

(b) Effect of K

Figure A. Performance with different parameter configurations of
the GS sampler when the binary cross entropy loss is applied,
trained on Market-1501. (a) with varying batch size under fixed
K = 4; and (b) with varying K under fixed B = 64.

C. Application to Other Baselines

Furthermore, to show the generality of the proposed
graph sampling method, we apply it to two other algorithms,
namely OSNet [10] and TransMatcher [4].

The official code of OSNet1 (MIT License) is used. We
used its osnet ibn x1 0 config, with softmax+triplet loss
and the PK sampler (RandomIdentitySampler) for the best
performance, denoted by OSNet-IBN + PK. This combina-
tion of softmax+triplet loss and the PK sampler is also the
most popular setting in person re-identification for strong
baselines. Then, upon this baseline, we apply the pro-

1https://github.com/KaiyangZhou/deep- person-
reid
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posed graph sampling to replace the PK sampler, denoted
by OSNet-IBN + GS. The training is performed on the
MSMT17 (all), as in [10], and the learned models are eval-
uated on the CUHK03-NP and Market-1501 datasets. The
results are shown in Table B. From the comparison it can
be seen that the proposed GS sampler can also improve
other strong baselines in replacing the popular PK sampler.
Therefore, it is proved to be general and may also be applied
to other methods.

Table B. Direct cross-dataset evaluation results (%) with different
baselines trained on MSMT17 (all).

Method CUHK03 Market
R1 mAP R1 mAP

OSNet-IBN [10] - - 66.5 37.2
OSNet-IBN + PK 23.4 23.6 67.9 39.6
OSNet-IBN + GS 24.5 24.9 71.3 42.6

Furthermore, with a very recent method TransMatcher
[4], we also compare the PK and GS samplers. The official
code of TransMatcher 2 (MIT License) is used, with its de-
fault settings. The results are shown in Table C. It can also
be observed that on average the proposed GS sampler per-
forms much better than the PK sampler, verifying again the
generality of GS.

D. Application to Unsupervised Domain Adap-
tation

As a new scenario, we tried unsupervised domain adap-
tation (UDA) by replacing PK with GS in the source do-
main of SpCL [1]. The Rank1/mAP results for PK and
GS are 86.1/70.9 and 87.3/71.5, respectively, for CUHK03-
NP→Market-1501. Slight improvements can be observed.
However, for the time being, it is still not yet straightfor-
ward to apply GS for pseudo labeled samples by clustering
on the target domain. This may be because pseudo labels
could be noisy, and GS may be aggressive in finding hard
negative samples that could possibly be positive. To address
this, further developments may be required in considering
how to handle noisy samples, which is quite interesting.

E. Further Ablation Studies
In this paper, all experiments are with images of 384 ×

128 as inputs. To understand the influence of image size,
we also conduct experiments with images of 256 × 128 as
inputs. The results are shown in Table D. It can be seen that
the results are quite close to each other on Market-1501 and
MSMT17, though results with 384 × 128 are clearly better
than that of 256 × 128 on CUHK03. Note that our results

2https://github.com/ShengcaiLiao/QAConv/tree/
master/projects/transmatcher

with 256× 128 still achieve the state of the art compared to
existing methods in Table 1 of the main paper.

In the proposed GS, one example per class is sampled
for the graph construction, which is efficient. Alternatively,
class centers can also be considered for graph construction.
In fact, class centers are used in [6] for clustering based
batch sampling, and we show better performance of GS in
Table 3 of the main paper. To further understand this, we
use class centers to construct graphs for GS. This is denoted
by QAConv-GS-Center. The comparison results are shown
in Table D. It is clear that GS performs better.

There might be two problems with class centers. First, it
lacks flexibility of sample relationships, since many classes
may have large distribution variances. This is also discussed
in [5]. Second, computing class centers requires feature ex-
traction of all training samples, which hinders large-scale
learning. The average training time increases from 1.68
hours of QAConv-GS to 2.27 hours of QAConv-GS-Center.
Especially, QAConv-GS costed 3.4 hours to train MSMT17
(all), but QAConv-GS-Center costed 5.4 hours.

F. Visualization of GS

Finally, we show some examples for the nearest neigh-
boring classes generated by the GS sampler in Fig. B. It
can be observed that, the GS sampler is indeed able to find
similar classes as hard examples to challenge the learning.
For example, similar kind of clothes, similar colors, pat-
terns, and accessories. These confusing examples helps a
lot in learning discriminative models. Besides, it seems that
in early epochs, the model tends to evaluate similarity with
visual appearance, regardless of the influence of foreground
and background. However, in late epochs, the model learns
to remove the influence of background, and learns higher
level of abstraction. For example, in the upper right group,
the similarity is less affected by bicycles in background with
epoch 15. In the first group of MSMT17, the similarity is
less affected by trees in background with later epochs. With
epoch 15 of the first group, the model learns the concept of
security guards. In the upper right group, with epoch 15 the
model learns the concept of girls with short skirts. In the
last group of Market-1501, with epoch 15 the clothes are
more consistent in style and color. In the upper right group
of MSMT17, with epoch 15 in GS the model correctly re-
trieves red coats. In the last group of MSMT17, with epoch
15 in GS the model correctly retrieves pink coats as well.

G. Limitations

The proposed method, despite achieving very good re-
sults, may have two limitations. First, GS requires addi-
tional computation for mini batch sampling. We design two
ways to reduce the computation, that is, employing GS only
at the beginning of each epoch, and randomly sampling only

https://github.com/ShengcaiLiao/QAConv/tree/master/projects/transmatcher
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Method Training CUHK03-NP Market-1501 MSMT17
Rank-1 mAP Rank-1 mAP Rank-1 mAP

TransMatcher-PK Market-1501 22.9 21.5 - - 45.6 17.8
TransMatcher-GS Market-1501 22.2 21.4 - - 47.3 18.4
TransMatcher-PK MSMT17 23.6 22.9 78.3 51.7 - -
TransMatcher-GS MSMT17 23.7 22.5 80.1 52.0 - -
TransMatcher-PK MSMT17 (all) 30.7 29.5 79.9 55.7 - -
TransMatcher-GS MSMT17 (all) 31.9 30.7 82.6 58.4 - -
TransMatcher-PK RandPerson 18.0 16.5 73.3 45.3 40.6 14.1
TransMatcher-GS RandPerson 17.1 16.0 77.3 49.1 48.3 17.7

Table C. Comparison of direct cross-dataset evaluation results (%) using TransMatcher [4] with PK and GS. MSMT17 (all) means all
images are used for training, regardless of subset splits.

Method Training CUHK03-NP Market-1501 MSMT17
Rank-1 mAP Rank-1 mAP Rank-1 mAP

QAConv-GS Market-1501 19.1 18.1 - - 45.9 17.2
QAConv-GS (256× 128) Market-1501 16.9 17.2 - - 45.4 17.1

QAConv-GS-Center Market-1501 15.4 14.7 - - 45.0 15.7
QAConv-GS MSMT17 20.9 20.6 79.1 49.5 - -

QAConv-GS (256× 128) MSMT17 18.6 19.8 77.9 49.6 - -
QAConv-GS-Center MSMT17 15.3 16.1 73.9 41.5 - -

QAConv-GS MSMT17 (all) 27.6 28.0 82.4 56.9 - -
QAConv-GS (256× 128) MSMT17 (all) 24.3 25.6 81.5 55.3 - -

QAConv-GS-Center MSMT17 (all) 25.2 24.6 78.6 51.2 - -
QAConv-GS RandPerson 18.4 16.1 76.7 46.7 45.1 15.5

QAConv-GS (256× 128) RandPerson 16.2 14.4 74.7 45.5 45.0 15.8
QAConv-GS-Center RandPerson 17.4 15.4 76.8 47.0 44.3 15.2

Table D. Comparison of the direct cross-dataset evaluation results (%) for different variants of QAConv-GS. QAConv-GS-Center is based
on selecting class centers for graph construction for GS. MSMT17 (all) means all images are used for training, regardless of subset splits.

one sample per class for the distance computation and graph
construction. As a result, the additional running time in-
troduced by GS is still acceptable, as reported in Section
5.4.1 of the main paper. Besides, note that with GS the
number of training epochs is generally reduced. For exam-
ple, with GS the proposed method usually requires less than
20 epochs for training, while existing methods typically re-
quire 60 epochs or more to train. Therefore, GS deserves
the additional computational costs. However, in our exper-
iments, the maximal number of classes is only 8,000. GS
may still have a big limitation with millions of identities,
which need further investigation.

Second, as discussed, GS provides challenging examples
for training, and so the default hard triplet loss only works
well with K = 2. Otherwise, the training is too difficult to
converge. Nevertheless, as discussed in Section B, this lim-
itation can be solved by employing the binary cross entropy
loss as an alternative, though with inferior performance.

H. Social Impacts
Person re-identification is a technique to automatically

search persons from a large amount of videos. It has po-
tential social values in some practical applications, such as
person image retrieval of suspects, character recognition in
movies [2], and so on. For example, it is very useful to
reduce large amount of human labors and greatly advance
the effort in criminal investigation. Accordingly, person
re-identification methods are actively studied. The person
re-identification technique, however, may also be used by
company for a surveillance of employees, or by malls for
tracking of daily visitors. Therefore, it requires effective
legislation to avoid abuse of this technique. This paper fo-
cuses on foundational research; it is not tied to particular
applications, let alone deployments.

Besides, the research and developments of such tech-
nique are often with datasets collected from surveillance
videos that may contain personally identifiable information.
To address this, a positive action is to remove such informa-
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MSMT, epoch 2 MSMT, epoch 8 MSMT, epoch 15 MSMT, epoch 2 MSMT, epoch 8 MSMT, epoch 15
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Figure B. Eight groups of examples for the nearest neighboring classes generated by the GS sampler. The first two rows are from the
training on Market-1501, while the last two rows are from that of MSMT17. In each group, three sets of images are shown, corresponding
to epoch 2, 8, and 15. In each set, the upper left image is the center class, and other images are the top-7 nearest neighboring classes to the
center class.

tion, as done in MSMT17v2 [8] with facial areas masked.
More promisingly, a better way recently demonstrated is to
use synthesized data, as done in RandPerson [7].
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