
Fast Light-Weight Near-Field Photometric Stereo: Supplementary Material

Daniel Lichy1 Soumyadip Sengupta2 David W. Jacobs1
1University of Maryland, College Park 2University of Washington
dlichy@umd.edu, soumya91@cs.washington.edu, djacobs@cs.umd.edu

1. Overview
This supplement includes additional details that could

not be put into the main paper due to space restrictions. In
Sec. 3 we define a relative coordinate system (where mean
depth is 1) and show how to relate absolute coordinates to
this coordinate system. In Sec. 4, we define the admissi-
ble light region in terms of this relative coordinate system.
In Sec. 5, we discuss the normal integration problem and
elaborate more on our depth prediction network. In Sec. 6
we give the low-level details of our network architectures.
In Sec. 7, we add some additional details regarding GPU
memory usage. In Sec. 8, we explain why the network
without per-pixel lighting from our ablation study performs
poorly. In Sec. 9, we demonstrate how certain errors can
form in our depth prediction network. Finally, in Sec. 10,
we present some additional experimental results.

2. Code
Code for this paper will be released on Github once the

paper is accepted for publication.

3. Coordinate System and Scale
This section shows how to pick a coordinate system with

a mean depth of one and how this resolves the global scale
ambiguity in the uncalibrated case. Equations from the
main paper Sec. 3 are included below for quick reference.

X(u, v) = D(u, v)K−1(u, v, 1)T (1)

Lj(X) =
(X − pj)

∥X − pj∥
, (2)

Aj(X) =
(Lj · dj)µj

||X − pj ||2
. (3)

Ij(u, v) = Aj(X)B(ωv, L
j(X))(N(u, v) · Lj(X)) + η(u, v)

(4)
Light scale We assume that all images have the same

light intensity. However, we train our model such that the
exact value of this intensity is unimportant, i.e. if we mul-
tiply all the images by a constant factor, we get the same
results.

We get this effect by dividing each image by the mean in-
tensity of the first image I0 in the input set i.e. µintensity =
meanu,vI

0(u, v) then the input to the network is the image
set Ij(u, v)/µintensity.

Mean depth We assume mean depth is known. We can
assume the mean depth is one by changing units. In particu-
lar, if µdepth is the mean depth then we can replace D(u, v)
with Dj(u, v)/µdepth and pj with pj/µdepth. From equa-
tions 1, 2, 3, and 4 we see that this just scales the image
intensity by µ2

depth, but, as stated above, our network is in-
variant to the image intensity scale factor.

Uncalibrated Scale Ambiguity There is a global scale
factor ambiguity between the light positions and depth,
which is exactly why we can assume the mean depth is one.
We train our calibration network on data with mean depth
one, so the network predicts lights in this relative coordinate
system. This resolves the scale ambiguity.

4. Admissible Light Region

Now that we have defined our relative coordinate system
with mean depth one 3, we can define the admissible light
region in terms of it.

We define the admissible light region as a cylinder with
its axis along the camera optical axis (a.k.a. z-axis) and ra-
dius 0.75. The extent of the cylinder is from 0.15 behind
the camera plane to 0.15 in front of the camera plane. Fur-
thermore, we specify the admissible light directions as the
directions making an angle of 30◦ or less with the z-axis.

Note that in absolute units, the size of the admissible re-
gion depends on the distance the object is from the camera.
For example, if we are capturing a big object, we would
place the camera farther away, and thus in absolute units,
the admissible region will be larger.

5. Normal Integration

In this section, we present the mathematical intuition that
inspired our depth prediction network. We then explain the
details of the network’s application. This section is not par-
ticularly rigorous, but we found that the network it inspired
works well in practice.

1

5.1. High Level Idea

Problem Statement Give functions p and q on some do-
main, we want to find a function on the domain satisfying
the PDE

∇U = (p, q) (5)

This is equivalent estimating depth from a normal map,
see 5.3. In general, a solution U may not exist. In which
case, we want to find some approximate solution.

Necessity of Global Information We can see that solv-
ing eq. 5 requires global information as follows. Observe
that given any solution to eq. 5 we can obtain another solu-
tion by adding a constant to it. Now suppose we broke the
domain of interest into patches and produced a solution for
each patch. Because each patch solution could have a dif-
ferent offset, we would have to look outside the patch to find
the proper offset needed to glue the patch solutions together
continuously. Therefore, a standard feed-forward network,
which can only look at patches in very high-resolution im-
ages due to its limited receptive field, can not generalize to
high-resolution data.

Proposed Solution Suppose we divide the depth into
patches as before, but we are given the mean depth of each
patch. Then we could solve the equation on each patch and
set the patch mean to the given mean, thus producing a so-
lution.

Concretely, consider a rectangular domain. Divide the
region into smaller rectangles call them P1,...,PN . Let µk =
meanx∈Pk

U(x). Suppose we knew the function V (x) given
by

V (x) = µk if x ∈ Pk (6)

i.e. V is constant on the patches.
Now we solve 5 individually on each patch Pk, call the

solution Uk. Furthermore, choose the Uk such that they
have mean value zero. Define

W (x) = Uk(x) if x ∈ Pk (7)

Then we can produce a solution to 5 as

U(x) = W (x) + V (x) if x ∈ Pk (8)

In other words

∇W = ∇(U(x)− V (x)) = (p, q)−∇V (x) (9)

can be solved by just looking at the individual patches
Pk. Then U(x) satisfying 5 can be recovered as W (x) +
V (x). Thinking of V as an upsampled version of a low-
resolution approximation to U is the motivation for our
depth prediction network explained next.

5.2. Depth Prediction Network

Now we give the details of the depth prediction networks
forward pass. The main paper does not distinguish between
the preprocessing the depth prediction network does and the
convolutional network proper. Here we use GID and GRD

for the networks and preprocessing combined (G∗D to refer
to both) and NET∗D to refer to the convolution nets proper.

Algo. 1 gives the forward pass for G∗D (in the initial
network, GID, the input depth is just a plane at z = 1).
Where D is the central finite-difference

D[U] = (U(m+1)n−U(m−1)n, Um(n+1)−Um(n−1)) (10)

Note that in Algo. 1 line (**) is just the discrete analog
of Eq. 9, where we multiply (p, q) by the step size hi for
the reasons explained in the main paper.

Algorithm 1 Forward pass of depth prediction network

1: G∗D(Ni, Di−1)
2: pi, qi = from Ni using perspective correction
3: Ui−1 = ln(Upsample[Di−1])
4: res = NET∗D(hi(pi, qi)−D[Ui−1]) (**)
5: Ui = Ui−1 + res
6: Di = exp(Ui)
7: return Di

5.3. Perspective correction

Suppose an image is taken with focal length f, depth,
D(u, v) and normals, N(u, v). Define U = ln(D) and
p = − N1

uN1+vN2+fN3
and q = − N2

uN1+vN2+fN3
. Then

U ,p, and q satisfy 5. Therefore, given normals we can
make this transformation and solve for U then recover D
as D = exp(U). For a derivations see [4].

5.4. Alternative Fast Normal Integration Methods

We considered FFT and DCT based integration methods
that are fast enough for network training. However, because
these assume a periodic or rectangular domain, they per-
form poorly on the datasets we tested, which all have ir-
regular domains. For more discussion on this issue please
see [4] Sec. 3.3 and 3.4.

6. Network Architectures
In this section, we define the low-level architectures of

all the networks used in the paper. In Tab. 1 we define the
notation used to describe network layers.

6.1. Normal Prediction Network

Both the initial, GIN , and recursive, GRN , normal pre-
diction networks have the same architecture. They consist
of a shared feature extractor defined by

A-B apply layer A then layer B
BN BatchNorm
Relu(x) Leaky Relu activation with parameter

x if ‘(x)’ is omitted x=0 (i.e. standard
Relu)

conv kn fm sp convolution layer with kernel of size
n with m filters and stride p. If stride
is 1 we will omit s1.

Conv kn fm sp conv kn fm sp - BN - Relu
ConvL kn fm sp conv kn fm sp - BN - Relu(0.1)
convt kn fm sp transposed convolution layer with

kernel of size n and m filters and
stride p.

Res n conv k3 fn - BN - Relu - conv k3 fn
- BN - +input. This defines the resid-
ual block. +input indicates adding the
input value to the output value.

Upsample bicubic upsampling by a factor of 2
tanh hyperbolic tangent activation

Table 1. Definition of notations for network architecture

• FE = Conv k7 f32 - Res 32 - Res 32 - Conv k3 f64 s2
- Res 64 - Res 64 - Conv k3 f128 s2 - Res 128 -
conv k3 f128

and a normal regressor defined by

• NR = Res 128 - convt k3 f64 s2 - BN - Relu - Res 64
- Res 64 - convt k3 f32 s2 - BN - Relu - conv k7 f3

The application of the network is given by

Ni = NR(
M

max
j=1

FE(Iji , Upsample(Ni−1)))+Upsample(Ni−1)

(11)
Due to the max-pooling the network is invariant to the

image ordering.

6.2. Depth Prediction Network

The architectures of the initial depth prediction network,
GID, and the recursive depth prediction network, GRD, are
the same. They are given by

• Conv k7 f32 - Res 32 - Res 32 - Conv k3 f64 s2
- Res 64 - Res 64 - Conv k3 f128 s2 - Res 128 -
Res 128 - Upsample - Conv k3 f64 - Res 64 - Res 64
- Upsample - Conv k3 f32 - conv k7 f1 - tanh

The full application of the normal prediction network is
defined in Sec. 5.

6.3. Light Prediction Network

The general architecture of the light prediction network
is taken from [1]. Like the normal prediction network, it
consists of a feature extractor LFE and a regressor LR de-
fined by

• LFE = ConvL k3 f64 s2 - ConvL k3 f128 s2 -
ConvL k3 f128 - ConvL k3 f128 s2 - ConvL k3 f128
- ConvL k3 f256 s2 - ConvL k3 f256

• LR = ConvL k3 f256 - ConvL k3 f256 s2 -
ConvL k3 f256 s2 - ConvL k3 f256 s2

It also has three final coordinate regressors CR i for each
coordinate x = x1, y = x2, z = x3 defined by:

• CR i = ConvL k1 f64 - convL k1 f1

First the network extracts a feature F j from each image
with the LFE network F j = LFE(Ij). It then forms a con-
text c = maxj F

j . Then for each feature F j it applies the
LR network to F j concatenated with the context c to form
position features PF j = LR(F j , c). Finally, it applies the
coordinate regessor CR i to each position feature PF j to
get the light coordinates i.e. the k coordinate of the light
position in image j is:

• pjk = CR i(PF j)

7. GPU Memory Usage Details

method res. time(s) cpu (GB) gpu (GB)
S20- [5] 512 2435.0 5 20
L20- [2] 512 59.5 8 5

Ours 512 1.3 (2.0) 4 9
L20- [2] 1024 200.0 27 17

Ours 1024 4.0 (6.9) 4 12

Table 2. Comparison of computational resources. Our method
produces significantly faster inference while consuming less CPU
and GPU memory than S20 and L20. The quantities in brackets
for our method indicate post-processing normal integration. S20
cannot operate on 1024 resolution (res) due to memory limitations.

This section includes some additional information re-
garding the GPU memory usage of method L20 and our
method.

L20 The memory usage of L20 is dependent on the batch
size (number of pixels) that the network processes at one
time. For our experiments, we used a batch size of 512.
GPU memory usage could potentially be reduced by de-
creasing the batch size.

Ours Despite our method requiring 12GB of GPU mem-
ory to run LUCES at 1024 on our cluster, with a Nvidia
P6000, we were able to run LUCES at 2048 resolution on
a desktop computer with an 8GB Nvidia RTX2080 GPU.
This indicates that our method is even more light-weight
than indicated in table 2, which is also in the main paper.

8. Ablation Details
This section explains why the network without per-pixel

lighting performs worse than with per-pixel lighting.

Figure 1. Depth prediction network developing jumps at disconti-
nuities. The jump is highlighted in the red box. Traditional normal
integration method [3] solves this issue (bottom row).

A convolutional neural network essentially applies the
same function to each input patch. Suppose we have two
patches, one on the left side of the image and one on the
right side, that appear the same. In the ablated network
with only global light positions as input, the patches look
identical, and the network must predict the same normal.
However, the lighting direction and intensity at these two
patches are really different, so the patches need to be inter-
preted differently. The network using per-pixel lighting can
distinguish between these two patches because they have
different per-pixel lighting, and therefore it can produce dif-
ferent accurate results.

9. Limitations
Jumps at discontinuities As we mention in the main

text, our depth prediction method can develop jumps at dis-
continuities. We show the most extreme example of this
type of jump in Fig. 1.

10. Additional Results
This section we presents some additional results and fig-

ures.
8 Image Results We compared S20 [5], L20 [2], and our

method on a subset of 8 randomly selected images from the
LUCES dataset. They are images: 5, 7, 13, 19, 26, 39, 48,
50. We show the results in Tab. 3. S20’s [5] code has a bug
that caused it to fail with NaN values on two objects: Bell
and House. Therefore, we report mean errors for all objects
(average 14) for L20 and our methods, and the average over

the 12 objects that S20 worked on (average 12).
We observe that our method only drops 1.2◦ MAE (from

11.32◦ to 12.44◦) when tested on this subset. Whereas the
other methods drop nearly 3◦ MAE.

Additional Results on Our Data In Fig. 2, we compare
the results of S20 [5], L20 [2], and our method on data we
captured.

Figure 2. Additional results on data captured by us.

Additional Calibrated Results In Fig. 3 we present
some additional normal maps from our tests on the LUCES
dataset in the calibrated case. In Fig. 4 we show the depth
error maps for each method in the calibrated case.

Additional Uncalibrated Results In Fig. 5 we present
some additional normal maps from our tests on the LUCES
dataset in the uncalibrated case. In Fig. 6 we show the depth
error maps for each method in the uncalibrated case.

Method Error Bell Ball Buddha Bunny Die Hippo House Cup Owl Jar Queen Squirrel Bowl Tool Average 14 Average 12
S20- [5] MAE 18.08 27.2 11.69 10.06 12.58 23.06 13.36 14.19 16.93 18.59 12.46 15.32 16.13

MZE 2.91 6.09 3.85 3.31 2.37 3.62 4.52 8.83 3.30 3.13 3.71 3.62 4.10
L20- [2] MAE 20.03 24.43 12.67 11.85 7.18 14.12 30.74 25.63 15.72 9.22 13.12 15.68 17.88 19.01 16.95 15.54

MZE 3.42 6.44 4.15 3.20 1.78 3.22 8.49 3.33 5.73 4.47 4.26 2.05 8.08 9.64 4.87 4.69
Ours MAE 8.84 9.64 13.59 9.31 5.99 8.75 29.43 21.62 11.43 7.13 13.38 13.10 8.73 13.18 12.44 11.32

MZE 2.04 2.12 13.27 3.21 2.91 3.20 7.13 2.85 3.51 7.84 3.06 3.68 3.84 3.04 4.41 4.38
MZE int 1.68 1.46 4.70 2.22 2.43 3.13 6.21 2.23 4.01 4.41 3.01 1.97 4.09 3.07 3.19 3.06

Table 3. Evaluation on LUCES with only 8 input images per object with calibrated lighting. Mean angular error (MAE in degrees) and
mean depth error (MZE in mm). S20 failed with NaN errors on Bell and House. Average 14 is the average error with all 14 LUCES objects
and Average 12 is the average error of the objects excluding Bell and House.

Figure 3. Additional normal predictions and error maps (in de-
grees) on the LUCES dataset in the calibrated case.

References

[1] Guanying Chen, Kai Han, Boxin Shi, Yasuyuki Matsushita,
and Kwan-Yee K. Wong. Sdps-net: Self-calibrating deep pho-
tometric stereo networks. In CVPR, 2019. 3

[2] Fotios Logothetis, Ignas Budvytis, Roberto Mecca, and
Roberto Cipolla. A cnn based approach for the near-field pho-
tometric stereo problem. ArXiv, abs/2009.05792, 2020. 3, 4,
5

[3] Yvain Quéau and Jean-Denis Durou. Edge-preserving inte-
gration of a normal field: Weighted least-squares, tv and l1

approaches. In SSVM, 2015. 4

[4] Yvain Quéau, Jean-Denis Durou, and Jean-François Aujol.
Normal integration: A survey. Journal of Mathematical Imag-
ing and Vision, 60, 05 2018. 2

[5] Hiroaki Santo, Michael Waechter, and Yasuyuki Matsushita.
Deep near-light photometric stereo for spatially varying re-
flectances. In European Conference on Computer Vision
(ECCV), 2020. 3, 4, 5

Figure 4. Depth error maps (in mm) on the LUCES dataset in the calibrated case

Figure 5. Additional normal predictions and error maps (in de-
grees) on the LUCES dataset in the uncalibrated case.

Figure 6. Depth error maps (in mm) on the LUCES dataset in the uncalibrated case

