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Appendix

In the following pages, we present experimental details (Section A), further analysis of the proposed method (Section B),
comparison with state-of-the-art methods under other settings (Section C), and qualitative results (Section D).

A. Details of Experimental Setup

A.1. Datasets

We evaluated the proposed method on three widely used benchmarks for deep metric learning: CUB-200-2011 [26],
CARS-196 [13], and Stanford Online Products (SOP) [19]. We split the datasets into training and test sets, according to the
standard settings [14, 19]. CUB-200-2011 contains 11,788 bird images of 200 different classes. We used 5,864 images of
its first 100 classes for training and 5,924 images of the remaining 100 classes for testing. CARS-196 contains 16,185 car
images of 196 different classes. We used 8,054 images of its first 98 classes for training and 8,131 images of the remaining
98 classes for testing. SOP is a larger dataset than the aforementioned two datasets. SOP contains 120,053 product images
of 22,634 classes. We used 59,551 images of its first 11,318 classes for training and 60,502 images of the remaining 11,316
classes for testing. It should be noted that we did not use any annotations (e.g., bounding box or key point annotations) other
than class labels for all datasets. The overall statistics of the datasets are summarized in Table 1.

Dataset Num. of Images Num. of Classes

Train Test Train Test

CUB-200-2011 [26] 5,864 5,924 100 100
CARS-196 [13] 8,054 8,131 98 98
SOP [19] 59,551 60,502 11,318 11,316

Table 1. Dataset statistics.

A.2. Implementation Details

We used PyTorch [20] library for our implementation, and experiments were mainly conducted on a single Nvidia GTX
1080 Ti machine. We followed the standard evaluation settings [11, 19, 21, 27] and used constrained experimental settings
for fair comparisons with previous works. The embedding network E(.) consists of the backbone network and one fully
connected layer. We considered BN-Inception [7] and ResNet-50 [6] pre-trained on ImageNet [1] as our backbone network.
On top of the backbone network, a random initialized fully connected layer was attached for dimension reduction where we
set the dimension of the output to 512. As in [24, 28], we applied layer normalization without affine parameters to obtain the
final embedding. Tables 2 and 3 summarize the full list of implementation details when using BN-Inception and ResNet-50
as the backbone network, respectively. In addition, we will release the code after publication.
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Module Name CUB-200-2011 CARS-196 SOP

HGNN
Num. layers 2 2 2
Hidden dimension 512 512 512
lr-HGNN 5e-4 5e-4 1e-3

D Initialization He-normal He-normal He-normal
lr-D 5e-2 1e-1 1e-2

Hyper-parameters
τ 16 24 16
α 1 0.9 1.6
λs 1 1 1

Training

Batch size 32 32 32
Learning rate 1e-4 1e-4 1e-4
Epochs 30 60 60
Weight decay 1e-4 5e-5 1e-4
Optimizer AdamW AdamW AdamW
lr scheduler Step (5/0.5) Step (10/0.5) Step (10/0.5)
BN freeze True True False
Warm-up True True True

Table 2. Implementation details of our HIST loss when using BN-Inception as the backbone.

Module Name CUB-200-2011 CARS-196 SOP

HGNN
Num. layers 2 2 2
Hidden dimension 512 512 512
lr-HGNN 6e-4 1e-3 1e-3

D Initialization He-normal He-normal He-normal
lr-D 1e-1 1e-1 1e-2

Hyper-parameters
τ 32 32 16
α 1.1 0.9 2
λs 1 1 1

Training

Batch size 32 32 32
Learning rate 1.2e-4 1e-4 1e-4
Epochs 40 50 60
Weight decay 5e-5 1e-4 1e-4
Optimizer Adam Adam Adam
lr scheduler Step (5/0.5) Step (10/0.5) Step (10/0.5)
BN freeze True True False
Warm-up True True True

Table 3. Implementation details of our HIST loss when using ResNet-50 as the backbone.

Hypergraph neural network: For all experiments, 2-layer of HGNN [9] with the dimension of hidden units of 512 was
used. The lr-HGNN denotes the initial learning rate for the HGNN. Unlike the embedding network E(.), the HGNN was
trained from scratch, so a larger learning rate was applied for faster convergence.
Prototypical distributions D: We assigned mean µc and covariance Qc = diag(qc) for each class. To ensure computational
stability, we assumed the log variance vc instead of qc, i.e., vc = log(qc). Then, µc ∈ RD and vc ∈ RD, were initialized
using He-normal initialization [5]. We also used a higher learning rate (lr-D) for these parameters for faster convergence.
Hyper-parameters: Following the recent methods [11, 24], we applied a large temperature scaling factor τ . We empirically
determined α that controls the reflection ratio of negative samples. Besides, we used λs = 1 for all experiments.
Training details: For all experiments, the mini-batch size was set to 32 following [16, 17, 29]. The learning rate and the
number of epochs were determined empirically. We also used L2 regularization on the learnable parameters (weight decay).
Following [11], we used AdamW (Adam with decoupled weight decay) [15] optimizer for BN-Inception and Adam [12]
optimizer for ResNet-50. During training, the learning rate decreased by a factor of 0.5 for every 5 epochs for CUB-200-
2011 and for every 10 epochs for CARS-196 and SOP, respectively. For CUB-200-2011 and CARS-196, BatchNorm (BN)
parameters were frozen during training (BN freeze) to reduce over-fitting as in [11, 17]. In addition, we applied warm-up
training for training stability as in [11, 24, 28], where only new parameters were trained for the first epoch.



A.3. Input Corruptions

In this section, we describe the detailed setup of the input corruptions used in the experiments presented in Section
4.3 of the manuscript. We used imgaug [10], a python library for image augmentation, to apply deformations to images.
Specifically, we considered nine input corruptions of four types that were not used for training: additive noises (Gaussian,
Salt & Pepper, and uniform noises), dropping pixels (cutout and dropout), affine transformation (rotation and perspective),
and degrading image quality (Gaussian blur and JPEG-compression). Figure 1 shows the resulting images for each corruption.
In the following, the detailed settings of each corruption are listed. For more details, please refer to imgaug [10].

• Gaussian noise: We added Gaussian noise to an image, sampled once per pixel from a normal distribution N (0, s),
where s is sampled per image and varies between 0 and 0.1*255.

• Salt & Pepper: We replaced 5% of all pixels in an image with salt and pepper noise.

• Uniform noise: We added random values between -50 and 50 to images, with each value being sampled once per image
and then being the same for all pixels (uniform).

• Cutout: We randomly replaced two random rectangle areas of each image with grayish pixels. The size of each rectangle
is 20% of the input image size, and the height and width are randomly determined. For more details, please refer to [2].

• Dropout: We dropped 0 to 5% of all pixels by converting them to black pixels. Specifically, we applied Coarse
Dropout [10] that leads to random rectangular areas being dropped.

• Rotation: We rotated images by a random value between -30◦ and 30◦. Empty pixels due to rotation were filled with
symmetrical padding.

• Perspective transform: We applied random four point perspective transformations to images. Specifically, we applied
perspective transformations using a random scale between 0.05 and 0.15 per image, where the scale is roughly a measure
of how far the perspective transformation’s corner points may be distanced from the image’s corner points.

• Gaussian blur: We blurred each image with a Gaussian kernel with a random sigma s that was sampled per image and
varied between 1 and 3.

• JPEG-compression: We removed high frequency components in images via JPEG-compression with a compression
strength between 80 and 95 (randomly and uniformly sampled per image). This degrades the quality of images.

Original Gaussian noise Salt & Pepper Uniform noise Cutout

Dropout Rotation Perspective Gaussian blur JPEG-compression

Figure 1. Examples of input corruptions used in the experiment. From left top to right bottom, we visualize the original image and the
example results of nine input corruptions of four types: additive noises (Gaussian noise, Salt & Pepper, and uniform noise), dropping
pixels (cutout and dropout), affine transformation (rotation and perspective transform), and degrading image quality (Gaussian blur and
JPEG-compression). Best viewed when zoomed in.



B. Further Analysis
B.1. Ablation Studies on CUB-200-2011

In Table 1 of the manuscript, we showed ablation studies on the CARS-196 dataset. Here, we report the same ablation
studies on the CUB-200-2011 dataset. Table 4 shows the retrieval performance (R@1) of ablation models on the CUB-
200-2011 dataset. Compared to the baseline and TF-like models, the proposed HIST model showed superior results, which
demonstrates the benefits of leveraging higher-order data correlations provided by the proposed hypergraph modeling. H-Pos
performed better than the baseline, but not the best, which indicates that exploiting the semantic relations of negative samples
further improves performance. Lastly, with LD, the prototypical distributions better capture the true distribution and improve
the quality of semantic tuplets, which provides a large performance gain.

Method Relations R@1

Single classification:
Baseline - 65.7 ± 0.3

Graph-based classification:
TF-like Transformer [25]-like attention 67.9 ± 0.3

Hypergraph-based classification:
H-Pos Only positive samples 67.4 ± 0.3
HIST (w.o. LD) Semantic tuplets 65.5 ± 0.2
HIST Semantic tuplets 71.4 ± 0.2

Table 4. Retrieval performance (R@1) of ablation models on the CUB-200-2011 dataset.

B.2. Prototypical Distributions

Can prototypical distributions capture the true feature distribution? We first investigated whether the learned prototype
distributions capture the true feature distribution using the CAR-196 dataset. Figure 2a shows the similarity matrix between
the learned means µc (y-axis) and the actual means of the embedded features of each class, i.e., 1

Nc

∑
yi=c zi, (x-axis) for

all training classes c ∈ C. The diagonal elements clearly show high similarities, which demonstrates that the learned means
capture the true feature means of each class well. We then analyzed the correlation between the learned covariance matrices
and the actual feature variations of each class. In Figure 2b, the Frobenius norm of the learned covariance matrix of each class
∥Qc∥F (y-axis) and the average distance between the samples of each class and the learned mean, i.e., 1

Nc

∑
yi=c ∥µc − zi∥22,

(x-axis) exhibit a positive correlation. This indicates that the learned covariance well characterizes the intra-class variations
in the embedding space. These results clearly support our claim that the learned prototypical distributions well characterize
the true feature distribution.
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Figure 2. Investigations of the learned prototypical distributions D on the CARS-196 dataset. (a) shows the similarity matrix between the
learned means and the true feature means. (b) shows the scatter plot between the Frobenius norms of the learned covariance and the true
intra-class feature variations.



Prototypical distributions vs. Proxies. It should be noted that the proposed prototypical distributions can be viewed as
an extended version of the proxies [11, 16, 21, 24, 29], which introduce covariance terms to model intra-class variations. In
previous proxy-based methods, all features of the same class are generally represented by a single proxy. Thus, intra-class
variations are ignored. While several methods [21, 29] introduce multiple proxies per class to handle intra-class variations,
the complexity increases as the number of proxies per class increases. In contrast, we efficiently model intra-class variations
by introducing covariance terms, which well characterize the true feature distribution as demonstrated in Figure 2. The better
modeling of the true feature distribution helps to improve the quality of our semantic tuples, which leads to improved fea-
ture learning. To validate the effectiveness of the prototypical distributions, we designed the ablation model that replaces the
prototypical distributions with the proxies (one proxy per class) and compared the performance. Table 5 shows the retrieval
performance (R@1) on the CUB-200-2011 and CARS-196 datasets. For both models, we used ResNet-50 as the backbone
network and followed the standard evaluation settings. The model with the proposed prototypical distributions showed supe-
rior performances for both datasets, which demonstrates the effectiveness of the proposed prototypical distributions.

Method CUB-200-2011 CARS-196

HIST (with proxies) 69.4 ± 0.4 87.8 ± 0.3
HIST (with prototypical distributions) 71.4 ± 0.2 89.6 ± 0.2

Table 5. Comparison of retrieval performance (R@1) when using proxies and prototypical distributions.

B.3. Balanced Mini-batch

Considering that our mini-batch is sampled completely randomly, there might be little communication between samples of
the same class. Therefore, we further conducted experiments with the balanced mini-batch sampling as in [3,22]. Specifically,
each mini-batch was constructed by first randomly sampling 8 classes and then randomly sampling 4 images for each selected
class. Table 6 shows the retrieval performance (R@1) comparisons for different sampling schemes. For both models, we used
ResNet-50 as the backbone network and followed the standard evaluation settings. Notably, the balanced sampling showed
additional performance gain on the CUB-200-2011 dataset. Yet, for simplicity, we used a randomly sampled mini-batch for
our experiments.

Mini-batch sampling CUB-200-2011 CARS-196

Random (32) 71.4 ± 0.2 89.6 ± 0.2
Balanced (4× 8) 71.7 ± 0.2 89.1 ± 0.3

Table 6. Retrieval performance (R@1) according to mini-batch sampling.

B.4. Different Embedding Dimensions

The dimensionality of the embedding vector is a key factor in deep metric learning that controls the trade-off between
performance and computational cost. We investigated the effect of the embedding dimensions on the CARS-196 dataset. We
evaluated the retrieval performance (R@1) with embedding dimensions varying from 64 to 1024. We used ResNet-50 as
the backbone network and followed the standard evaluation settings. Table 7 summarizes the results. We confirmed that the
performance improved as the embedding size increased.

Dimension 64 128 256 512 1024

R@1 80.4 ± 0.3 83.1 ± 0.2 88.1 ± 0.3 89.6 ± 0.2 89.7 ± 0.2

Table 7. Retrieval performance (R@1) with different embedding dimensions on the CARS-196 dataset.



C. Comparison with State-of-the-art Methods

C.1. MLRC [17] Evaluation

In this work, we followed the standard evaluation settings [11, 19, 21, 27] and used constrained experimental settings
for fair comparisons with previous deep metric learning methods. Recently, several studies [4, 17] have questioned these
conventional experimental settings. Specifically, a paper named A Metric Learning Reality Check [17] pointed out the flaws
of the existing evaluation settings, including unfair comparisons with a more powerful backbone, uninformative evaluation
metrics, and training with test set feedback. Moreover, the authors presented new evaluation settings, which we refer to
as MLRC evaluation settings, and introduced new evaluation metrics, RP and MAP@R. To improve the credibility of our
experimental evaluation, we additionally conducted experiments on the CUB-200-2011 and CARS-196 datasets by strictly
following the MLRC evaluation settings (please refer to the original paper [17] for detailed evaluation settings). Tables 8
and 9 summarize the overall results under the MLRC evaluation settings on the CUB-200-2011 and CARS-196 datasets,
respectively. In all experiments, our HIST loss achieved state-of-the-art performance.

Method Concatenated (512-dim) Seperated (128-dim)

P@1 RP MAP@R P@1 RP MAP@R

Contrastive 68.13 ± 0.31 37.24 ± 0.28 26.53 ± 0.29 59.73 ± 0.40 31.98 ± 0.29 21.18 ± 0.28
Triplet 64.24 ± 0.26 34.55 ± 0.24 23.69 ± 0.23 55.76 ± 0.27 29.55 ± 0.16 18.75 ± 0.15
NT-Xent 66.61 ± 0.29 35.96 ± 0.21 25.09 ± 0.22 58.12 ± 0.23 30.81 ± 0.17 19.87 ± 0.16
ProxyNCA 65.69 ± 0.43 35.14 ± 0.26 24.21 ± 0.27 57.88 ± 0.30 30.16 ± 0.22 19.32 ± 0.21
Margin 63.60 ± 0.48 33.94 ± 0.27 23.09 ± 0.27 54.78 ± 0.30 28.86 ± 0.18 18.11 ± 0.17
Margin/class 64.37 ± 0.18 34.59 ± 0.16 23.71 ± 0.16 55.56 ± 0.16 29.32 ± 0.15 18.51 ± 0.13
N. Softmax 65.65 ± 0.30 35.99 ± 0.15 25.25 ± 0.13 58.75 ± 0.19 31.75 ± 0.12 20.96 ± 0.11
CosFace 67.32 ± 0.32 37.49 ± 0.21 26.70 ± 0.23 59.63 ± 0.36 31.99 ± 0.22 21.21 ± 0.22
ArcFace 67.50 ± 0.25 37.31 ± 0.21 26.45 ± 0.20 60.17 ± 0.32 32.37 ± 0.17 21.49 ± 0.16
FastAP 63.17 ± 0.34 34.20 ± 0.20 23.53 ± 0.20 55.58 ± 0.31 29.72 ± 0.16 19.09 ± 0.16
SNR 66.44 ± 0.56 36.56 ± 0.34 25.75 ± 0.36 58.06 ± 0.39 31.21 ± 0.28 20.43 ± 0.28
MS 65.04 ± 0.28 35.40 ± 0.12 24.70 ± 0.13 57.60 ± 0.24 30.84 ± 0.13 20.15 ± 0.14
MS+Miner 67.73 ± 0.18 37.37 ± 0.19 26.52 ± 0.18 59.41 ± 0.30 31.93 ± 0.15 21.01 ± 0.14
SoftTriple 67.27 ± 0.39 37.34 ± 0.19 26.51 ± 0.20 59.94 ± 0.33 32.12 ± 0.14 21.31 ± 0.14
HIST (Ours) 69.61 ± 0.28 38.83 ± 0.12 28.21 ± 0.12 61.34 ± 0.18 33.13 ± 0.15 22.30 ± 0.14

Table 8. Results on the CUB-200-2011 dataset under the MLRC evaluation settings. For all compared methods, the results were quoted
from [17]. The best results are marked in bold, and the second-best results are underlined.

Method Concatenated (512-dim) Seperated (128-dim)

P@1 RP MAP@R P@1 RP MAP@R

Contrastive 81.78 ± 0.43 35.11 ± 0.45 24.89 ± 0.50 69.80 ± 0.38 27.78 ± 0.34 17.24 ± 0.35
Triplet 79.13 ± 0.42 33.71 ± 0.45 23.02 ± 0.51 65.68 ± 0.58 26.67 ± 0.36 15.82 ± 0.36
NT-Xent 80.99 ± 0.54 34.96 ± 0.38 24.40 ± 0.41 68.16 ± 0.36 27.66 ± 0.23 16.78 ± 0.24
ProxyNCA 83.56 ± 0.27 35.62 ± 0.28 25.38 ± 0.31 73.46 ± 0.23 28.90 ± 0.22 18.29 ± 0.22
Margin 81.16 ± 0.50 34.82 ± 0.31 24.21 ± 0.34 68.24 ± 0.35 27.25 ± 0.19 16.40 ± 0.20
Margin/class 80.04 ± 0.61 33.78 ± 0.51 23.11 ± 0.55 67.54 ± 0.60 26.68 ± 0.40 15.88 ± 0.39
N. Softmax 83.16 ± 0.25 36.20 ± 0.26 26.00 ± 0.30 72.55 ± 0.18 29.35 ± 0.20 18.73 ± 0.20
CosFace 85.52 ± 0.24 37.32 ± 0.28 27.57 ± 0.30 74.67 ± 0.20 29.01 ± 0.11 18.80 ± 0.12
ArcFace 85.44 ± 0.28 37.02 ± 0.29 27.22 ± 0.30 72.10 ± 0.37 27.29 ± 0.17 17.11 ± 0.18
FastAP 78.45 ± 0.52 33.61 ± 0.54 23.14 ± 0.56 65.08 ± 0.36 26.59 ± 0.36 15.94 ± 0.34
SNR 82.02 ± 0.48 35.22 ± 0.43 25.03 ± 0.48 69.69 ± 0.46 27.55 ± 0.25 17.13 ± 0.26
MS 85.14 ± 0.29 38.09 ± 0.19 28.07 ± 0.22 73.77 ± 0.19 29.92 ± 0.16 19.32 ± 0.18
MS+Miner 83.67 ± 0.34 37.08 ± 0.31 27.01 ± 0.35 71.80 ± 0.22 29.44 ± 0.21 18.86 ± 0.20
SoftTriple 84.49 ± 0.26 37.03 ± 0.21 27.08 ± 0.21 73.69 ± 0.21 29.29 ± 0.16 18.89 ± 0.16
HIST (Ours) 87.73 ± 0.22 39.99 ± 0.20 30.46 ± 0.24 79.30 ± 0.24 32.78 ± 0.17 22.34 ± 0.19

Table 9. Results on the CARS-196 dataset under the MLRC evaluation settings. For all compared methods, the results were quoted
from [17]. The best results are marked in bold, and the second-best results are underlined.



C.2. Smaller Embedding Dimension

In the manuscript, we compared the performance when the feature dimension is 512, the most common setting. Here, we
further evaluated the performance when the feature dimension is 64, which is the second most common setting. We used
ResNet-50 as the backbone network and followed the standard evaluation settings. We compared the retrieval performance of
the proposed method with those of the state-of-the-art methods on the CUB-200-2011, CARS-196, and SOP datasets. Table 10
summarizes the overall results. For all datasets, the model trained with our HIST loss showed superior performances. This
further validates the effectiveness of the proposed method.

Method CUB-200-2011 CARS-196 SOP

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@102 R@103

LiftedStruct64 [19] 43.6 56.6 68.6 79.6 53.0 65.7 76.0 84.3 62.5 80.8 91.9 -
N-pair-mc64 [23] 51.0 63.3 74.3 83.2 71.1 79.7 86.5 91.6 67.7 83.8 93.0 97.8
Clustering64 [18] 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8 67.0 83.7 93.2 -
ProxyNCA64 [16] 49.2 61.9 67.9 72.4 73.2 82.4 86.4 88.7 73.7 - - -
MS64 [27] 57.4 69.8 80.0 87.8 77.3 85.3 90.5 94.2 74.1 87.8 94.7 98.2
SoftTriple64 [21] 60.1 71.9 81.2 88.5 78.6 86.6 91.8 95.4 76.3 89.1 95.3 -
ProxyAnchor64 [11] 61.7 73.0 81.8 88.8 78.8 87.0 92.2 95.5 76.5 89.0 95.1 98.2
ProxyGML64 [29] 59.4 70.1 80.4 - 78.9 87.5 91.9 - 76.2 89.4 95.4 -
HIST64 (Ours) 62.5±0.2 73.6±0.2 83.0±0.2 89.6±0.1 80.4±0.3 87.6±0.2 92.4±0.2 95.4±0.2 78.9±0.3 90.5±0.2 95.8±0.1 98.5±0.0

Table 10. Recall@K (%) on CUB-200-2011, CARS-196, and SOP datasets. Superscript denotes the embedding size. For all compared
methods, the results were quoted from the original paper. For our method, we reported the average performance with 95% confidence
interval evaluated over 10 independent runs. The best results are marked in bold, and the second-best results are underlined.

C.3. Larger Image Size

In the standard evaluation settings, the default image size is set to 224×224 in deep metric learning. However, several
recent methods [8, 11, 24] utilized larger images with the size of 256×256. The image size has a significant influence on the
model performance. For a fair comparison to these methods, we further evaluated the performance using 256×256 images.
We used ResNet-50 as the backbone network and followed the standard evaluation settings except for the image size. As
shown in Table 11, the proposed method significantly outperformed the other methods by a large margin for all datasets.
Notably, the proposed method using 224×224 images already achieved better performance than the other methods using
256×256 images, which further demonstrates the superiority of the proposed method.

Method CUB-200-2011 CARS-196 SOP

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@102 R@103

†HORDE512 [8] 66.3 76.7 84.7 90.6 83.9 90.3 94.1 96.3 80.1 91.3 96.2 98.7
†ProxyNCA++512 [24] 69.0 79.8 87.3 92.7 86.5 92.5 95.7 97.7 80.7 92.0 96.7 98.9
†ProxyAnchor512 [11] 71.1 80.4 87.4 92.5 88.3 93.1 95.7 97.5 80.3 91.4 96.4 98.7
HIST512 (Ours) 71.4±0.2 81.1±0.3 88.1±0.2 92.7±0.1 89.6±0.2 93.9±0.1 96.4±0.1 97.8±0.3 81.4±0.2 92.0±0.2 96.7±0.1 98.9±0.0
†HIST512 (Ours) 73.0±0.3 82.2±0.2 88.8±0.2 93.2±0.1 90.6±0.2 94.7±0.2 96.9±0.1 98.2±0.1 81.5±0.2 92.2±0.2 96.8±0.1 98.9±0.1

Table 11. Recall@K (%) on CUB-200-2011, CARS-196, and SOP datasets. Superscript denotes the embedding size, and ”†” indicates that
the model uses a larger input image (256×256). For all compared methods, the results were quoted from the original paper. For our method,
we reported the average performance with 95% confidence interval evaluated over 10 independent runs. The best results are marked in bold,
and the second-best results are underlined.



D. Qualitative Results
D.1. Visualization of Feature Activation Maps

In Section 4.3 of the manuscript, we investigated the feature activation maps from the last convolutional layer of the
learned embedding network for test images and showed two examples. To demonstrate the consistency of our results, we
present more results on CUB-200-2011 in Figure 3 and CARS-196 in Figure 4. As can be seen, the proposed method better
attended to the object region than the baseline. This observation implies that our HIST loss would make the embedding
network capture important semantics from the image.
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Figure 3. Visualization of three channels of the last feature activation maps which have the maximal average activation values on the
CUB-200-2011 dataset.
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Figure 4. Visualization of three channels of the last feature activation maps which have the maximal average activation values on the
CARS-196 dataset.



D.2. Retrieval Results

In this section, we present qualitative retrieval results on the CUB-200-2011, CARS-196, and SOP datasets. Figure 5, 6,
and 7 show retrieval results on CUB-200-2011, CARS-196, and SOP datasets, respectively. Specifically, we visualize the
top-4 nearest images along with the query image. The green box indicates that the retrieved image is of the same class as the
query image, and the red box indicates that the image is of a different class from the query image. We can observe that the
proposed method clearly finds images that are visually similar to the query images no matter that the retrieval result is correct
or incorrect. The overall results clearly demonstrate the effectiveness of the proposed method.

Query Top-4 Retrieval Results Query Top-4 Retrieval Results

Figure 5. Retrieval results on the CUB-200-2011 dataset.

Query Top-4 Retrieval Results Query Top-4 Retrieval Results

Figure 6. Retrieval results on the CARS-196 dataset.

Query Top-4 Retrieval Results Query Top-4 Retrieval Results

Figure 7. Retrieval results on the SOP dataset.
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