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This appendix presents more details of the limitations,
implementation details, and extends the experimental sec-
tion presented in the main manuscript.

1. Limitations. In Section 1, we discuss the limitations
of the proposed method.

2. Potential Negative Societal Impact. We discuss the
potential negative societal impact in Section 2.

3. Implementation Details. We provide network archi-
tecture of ResT, dataset statistics, and evaluation pro-
tocols in Section 3.

4. Additional Ablation Study. Additional ablation stud-
ies are presented in Section 4.

5. Extended Experiments. In Section 5, we extend the
experimental section presented in the main manuscript.
We demonstrate the generalization of the proposed
method using pre-trained object features as model in-
puts and visualize qualitative results.

1. Limitations
The goal of this work is to provide a cleaner framework

for zero-shot action recognition. In our setting, the model is
not allowed to be pretrained on another dataset, and is eval-
uated on its ability to perform classification using unseen
visual prototypes composited from seen visual prototypes.
Although our method demonstrates its competitiveness on
the benchmark datasets, it has limitations in some cases.
For example, our model confuses similar actions, such as
“laugh,” “smile,” and “chew.” In these three classes, the ac-
tions mainly involve opening and shutting the jaws, but the
muscle movements involved are subtle.

We also observe composite failures, e.g., for “hula hoop”
where the class is named only by a noun of the main object,
or for “playing daf” where the class is named by a general
verb (ex: play, make, use) with a noun of a rare object. Our
model is able to composite actions from other actions, but it
exists a natural challenge to find relatedness for composit-
ing out-of-distribution objects. However, if the setting of
pure zero-shot is relaxed, our model could extend its capa-
bility via pretraining on another dataset, such as ImageNet.

Figure 1, 2, and 3 illustrate the confusion matrixes of
ResT 18 model evaluated on UCF101, HMDB51, and Ac-
tivtyNet.

2. Potential Negative Societal Impact
Training and evaluating video understanding models are

typically computationally intensive, which might signifi-
cantly impact the environment. To alleviate this problem,
we proposed a framework that reduces the computational
demands for ZSAR. The potential negative impacts may in-
clude but are not limited to: (1) It poses a risk when directly
applying action recognition models for decision making, es-
pecially in the health care and autonomous vehicle fields.
(2) A video action recognition model can be misused, for
example for unauthorized surveillance. Ethical considera-
tions must be addressed in a real-world application.

3. Implementation Details
3.1. Network architecture of ResT

We describe the detailed network architecture of ResT in
this section. ResT follows the design of the transformer
encoder in [10]. As shown in Figure 4, the transformer
encoder consists of alternating layers of multiheaded self-
attention (MSA) and MLP blocks (Eq. 1, 2). Residual con-
nections and layernorm (LN) are applied after every block.
The MLP contains two fully-connected layers with a GeLU
non-linearity. Our transformer consists of L layers. We de-
note zl as the output of ; th layers.

z′l = !# ("(�(zl−1) + zl−1), (1)

zl = !# ("!%(z′l ) + z
′
l ), (2)

where ; = 1, ..., !.
ResT uses the first token, I00, to perform action classifica-

tion on a source dataset. A classification head is attached to
the output of the first token, I0

!
. We append a 1-hidden-layer

MLP 5 (·), which is used to predict the final video classes.

G = !# (I0!) (3)
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Figure 1. Confusion matrix on UCF101 by ResT 18 (K664) model.

Figure 2. Confusion matrix on HMDB51 by ResT 18 (K664) model.



Figure 3. Confusion matrix on ActivityNet by ResT 18 (K605) model.

Figure 4. Architecture of the transformer encoder in our proposed ResT.



Our ResT consists of 12 transformer layers with a hidden
size of 768D. The visual representation size is also 768D.
The classifier weights are 768 × 664, and 768 × 605 corre-
sponding to Kinetics 664 and 605 training sets.

3.2. Datasets

We train our models on a subset of the Kinetics dataset
[4], and perform evaluations on three action recognition
datasets: UCF101, HMDB51, and ActivityNet. UCF101
is labeled with 101 action categories with a focus on sports
and contains 13,320 videos. HMDB51 has 6,767 videos
with 51 classes. ActivityNet contains 200 classes and
27,801 untrimmed videos with an emphasis on daily activ-
ities. Kinetics dataset contains 700 classes with 545,317
training videos.

3.3. Evaluation protocol

In the zero-shot evaluation, we report results on half
dataset (0/50 split) and full dataset (0/100). Most prior
methods use pre-trained action recognition models to ex-
tract features, followed by training a ZSL model on 50% of
the target dataset and testing on the other 50% of the same
dataset to alleviate domain shift problems (50/50 setting).
Our work follows E2E [2] to adopt a cross dataset configu-
ration, where the models are only trained once on a source
action recognition dataset and then are directly evaluated on
50% of other target datasets. The goal of 0/50 setting is to
disallow tailoring ZSAR models to a specific test dataset.
In the 0/50 split, we randomly choose 50% classes from
the test dataset: 50 on UCF101, 25 on HMDB51, and 100
on ActivityNet. On each test set, we randomly generate
10 splits and report the averaged results. As E2E [2] and
our method are trained on a separate dataset, we are able to
test our models on full UCF101, HMDB51, and ActivityNet
datasets (0/100).

4. Additional Ablations

In this section, we extend the experimental section pre-
sented in the main manuscript.

4.1. Influence of removing overlapping classes

Table 1. Accuracy comparisons on models trained on Kinetics
664 and full Kinetics 400/700 datasets. All models are evaluated
on 25 clips on the 50% of UCF101 and HMDB51 datasets.

UCF (0/50)

ResT 101 Model Top-1 Top-5

664 classes 58.7 75.9
400 classes 61.1 79.2
700 classes 69.2 83.8

In this experiment, we compare our models trained on
Kinetics 664 (with overlapping classes removed) with the
models trained on the full Kinetics 400 and 700 datasets
[4] (without overlapping classes removed) to demonstrate
that removing overlapping classes is a non-trivial learning
constraint. The results are reported in Table 1. It can be seen
that the models trained on the full Kinetics dataset obtain
higher Top-1 accuracy than the models trained on the sets
without overlapping classes (e.g., 2.4% absolute gains in
Top-1 accuracy on 0/50 configuration from K664 to K400
and 10.5% gains from K664 to K700). As discussed in the
main manuscript, one has to ensure that the seen and unseen
classes are disjoint and the zero-shot setting is maintained
when external datasets are involved.

4.2. Importance of constraints in semantic related-
ness transfer

The design of the transfer scheme aims to embed a com-
bination of the most representative and distinctive informa-
tion for effective knowledge transfer. It follows, the pro-
posed framework is thus less prone to the hubness problem
and the bias with NN search. In this section, we discuss
the importance of the constraints in the semantic related-
ness transfer.

The hubness problem is related to the high-dimensional
nearest neighbor search. That is, some points (hubs) fre-
quently occur in the :-nearest neighbor set of other points.
The skewness of an empirical k: distribution is typically
used to measure the degree of hubness [7, 8]. The distribu-
tion k: is the distribution of the number of times (k: ( 9))
the 9 th prototype is in the top : nearest neighbors of the test
samples. The skewness of the distribution is defined as:

k: B:4F=4BB =

∑W

9=1 (k: ( 9) − � [k: ])3

+0A [k: ]
3
2

, (4)

where W is the total number of test prototypes. A higher
skewness value indicates a more severe hubness issue.

Here, we summarize the three constraints imposed in
the semantic relatedness transfer. Constraint I is to ensure
the composited unseen prototypes are representative. Con-
straint II and III together promote the composited visual
prototypes of unseen classes to be distinctive from one an-
other.

In Table 2, we discuss the effect of the constraints in
terms of the degree of hubness (k1 B:4F=4BB) and classifi-
cation accuracy (Top-1/ Top-5). The accuracy is evaluated
using one clip with ResT 18 (664/605) model. We consider
five combinations: (1) Reverse transfer direction (compos-
ite semantic representation and perform ZSAR in the se-
mantic space), (2) No constraints imposed, (3) Only con-
straint I, (4) Only constraint II and III, (5) All constraints.



Table 2. Effect of constraints in the semantic relatedness transfer scheme

(a) Evaluation on UCF101 dataset

UCF (0/50)

ResT 18 (664) ZSAR in V or S space Skewness Top-1 Top-5

Reverse transfer S 3.350 36.3 69.2
No constraint V 2.235 38.2 73.9
Constraint I V 1.342 50.7 81.5
Constraint II + III V 1.290 51.8 74.4
All constraints V 1.228 54.0 74.6

(b) Evaluation on HMDB51 dataset

HMDB (0/50)

ResT 18 (664) ZSAR in V or S space Skewness Top-1 Top-5

Reverse transfer S 3.712 35.0 63.9
No constraint V 1.688 35.1 64.7
Constraint I V 1.379 37.9 68.5
Constraint II + III V 0.849 38.1 64.5
All constraints V 1.418 39.2 66.9

(c) Evaluation on ActivityNet dataset

ActivityNet (0/50)

ResT 18 (605) ZSAR in V or S space Skewness Top-1 Top-5

Reverse transfer S 2.742 21.9 40.1
No constraint V 1.827 21.2 45.9
Constraint I V 1.173 25.1 51.5
Constraint II + III V 1.228 25.4 40.8
All constraints V 1.020 26.2 47.4

Figure 5. Sample results of ZSAR in visual space (V) and semantic space (S).

We draw several conclusions from Table 2: (1) In gen-
eral, we observe Top-1 accuracy is negatively affected by
the presence of hubs, and the hubness problem is more
likely to arise in the semantic space than the visual space.
We visualize some qualitative results of ZSAR in different
spaces in Figure 5. (2) Compared to ’No constraint,’ all
combinations of the constraints help improve the classifica-
tion accuracy and alleviate the effect of the hubness prob-
lem. (3) When applying constraint I only, Top-5 accuracy is
consistently higher because the constraint filters out the less

related classes. (4) Constraint II and III are effective, ensur-
ing the distinction of the composited unseen prototypes. In
general, it obtains a low hubness value with these two con-
straints. (5) Combining all three constraints yields a filter-
and-refine methodology. Overall, it achieves the best Top-1
accuracy with a relatively low degree of hubness because
these three constraints together consider both representative
and distinctive.



5. Extended Experiments

Although we propose a framework where no pre-training
on additional datasets is performed to ensure no prior
knowledge of unseen classes is acquired during training, our
model is flexible and capable of cooperating with existing
pre-trained models.

In the ablation study, we show the generalization of the
proposed model by taking pre-trained object region features
as inputs. Considering the essence of zero-shot setting, it
might be arguable if using object information is incongru-
ous with the idea of pure ZSAR because it is highly likely
that some major objects occur in seen and unseen classes,
and some unseen classes are simply named for objects (e.g.,
“yo-yo,” “uneven bars,” and “pommel horse”). However,
modeling objects helps with the model interpretability. In
this experiment, to prevent the model from achieving high
accuracy by matching object names instead of recognizing
actions, we only use object region features as model inputs
to examine the capability of the proposed model. Detection
outputs (object labels) are not used in the experiment.

In this experiment, we replace frame-level features with
object region features. We start with object feature extrac-
tors, an off-the-shelf detection network, UpDown [1]. The
UpDown detector was trained on Visual Genome dataset
[5]. For a frame � C sampled at time C in a video E, an amount
A ′C = [A ′C1 , ..., A

′C
# C
A
] of # C

A object features are extracted by the
detector, where A ′C

:
∈ R? is a ?-dimension vector. To en-

code spatiotemporal information, we construct a 7-d vector
BC
:

from the region position (normalized four corner coordi-
nates, width, and height) and the frame index (normalized
frame index offset). We concatenate object feature A ′C

:
and

the spatiotemporal vector BC
:

in order to form a spatiotem-
porally sensitive region vector A C

:
.

We report the results of our model using object region
features as model inputs in Table 3. It shows that our model
is able to handle contextual information in object features
and make the classification of actions relatively effective.

Table 3. ZSAR performance with ResNet and ob-
ject features on the 50% of UCF101, HMDB51,
and ActivityNet datasets.

Model UCF101 HMDB51 ActivityNet

K664
ResT 18 54.7 39.3 -
ResT 101 58.7 41.1 -
Ours obj 57.3 39.6 -

K605
ResT 18 50.9 37.6 29.2
ResT 101 55.9 40.8 32.5
Ours obj 55.0 40.5 34.2

Figure 6, 7, and 8 illustrate snapshots of action sam-
ples on the UCF101 [9], HMDB51 [6] and ActivityNet [3]
that are correctly classified by our model. Each subfigure
presents three sample video frames from one action clip.
Each frame highlights the five most attended object regions
by our network for action recognition. We observe that
our model focuses on the active objects where an action
is taking place and attends to the most indicative objects,
e.g.,“mop handle and head” and “water bucket” in Figure
6(b) or “pizza dough” in Figure 6(c). For example, in Fig-
ure 7(c), a sample from the class “eat” on HMDB51, our
model attends to the mouth, spoon, and hand. Similarly, in
Figure 8(c), a sample from the class “playing beach volley-
ball” on ActivityNet, our model focuses on the player who
sets the volleyball in the first frame, the player who steps
toward the ball and bends the knee in the middle frame, and
then the same player jumping and preparing for spiking the
ball in the last frame. These examples demonstrate the ef-
fectiveness of our transformer-based framework that learns
to capture the evolution of human actions by observing the
most relevant and visually descriptive objects.



(a) Action class: “Baseball pitch”.

(b) Action class: “Mopping floor”.

(c) Action class: “Pizza tossing”.

(d) Action class: “Writing on board”.

Figure 6. Example results from our model with object region features as inputs on the classification of the “baseball pitch,” “mopping
floor,” “pizza tossing,” and “writing on board” actions on UCF101 dataset. Different bounding boxes are coded with different colors.
Brighter colors depict the most attended objects. Best viewed in color.



(a) Action class: “Clap”.

(b) Action class: “Drink”.

(c) Action class: “Eat”.

(d) Action class: “Kick”.

(e) Action class: “Pullup”.

Figure 7. Example results from our model with object region features as inputs on the classification of the “clap,” “drink,” “eat,” “kick,” and
“pullup” actions on HMDB51 dataset. Different bounding boxes are coded with different colors. Brighter colors depict the most attended
objects. Best viewed in color.



(a) Action class: “Disc dog”.

(b) Action class: “Layup drill in basketball”.

(c) Action class: “Playing beach volleyball”.

(d) Action class: “Hitting a pinata”.

(e) Action class: “Throwing darts”.

(f) Action class: “Tumbling”.

Figure 8. Example results from our model with object region features as inputs on the classification of the “disc dog,” “layup drill in
basketball,” “playing beach volleyball,” “hitting a pinata,” “throwing darts,” and “tumbling” actions on ActivityNet dataset. Different
bounding boxes are coded with different colors. Brighter colors depict the most attended objects. Best viewed in color.
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