
Supplementary Document:
Generalizing Interactive Backpropagating Refinement for Dense Prediction

Networks

1. Optimal learning rates for experiments
Learning rate is one of the most important hyperparam-

eter for backpropagation. Therefore, we search for the best
learning rate settings for all experiments by using a subset
of the test set from each dataset for evaluation using vari-
ous learning rates. Specifically, we test for 10 learning rates
ranging from 0.1×0.50 to 0.1×0.59. Tables 1-5 shows the
obtained best learning rates used for our experiments. The
number of layers included in the architecture is denoted as
L1, L2 and L3. Architectures for semantic segmentation
and image matting can contain up to 3 G-BRS layers, while
architectures for interactive segmentation and depth estima-
tion contain 1 G-BRS layer.

2. Quantitative results for all experiments
2.1. Interactive and semantic segmentation

We only report top scores achieved by each G-BRS layer
type in the main paper due to the space limit. Tables 6-8
show the AUC as well as maximum mIoU achieved in to-
tal number of clicks using all backpropagating refinement
settings. We see that the proposed consistency loss Lc en-
ables very consistent improvement for all G-BRS as well
as RGB-BRS settings. The G-BRS-bmconv layer also con-
sistently achieves the best AUC and maximum mIoU for
segmentation tasks.

2.2. Image matting

We compute the following standard metrics for the task
of image matting: Sum of Absolute Differences (SAD),
Mean Squared Error (MSE), Gradient (Grad) and Connec-
tivity (Conn) error. We report results on MSE in the main
paper due to the space limit. For simplicity, here we re-
port the metrics obtained for each G-BRS layer type with
the layout (#layers) that achieves the best scores. Figure 1
shows that the G-BRS-sb layer that uses the same layer ar-
chitecture as f -BRS has limited ability for refinement com-
paring to other G-BRS layers. This is due to G-BRS-sb’s
lack of ability for localized modification of the features. We
also observe that settings that utilize the consistency loss Lc

generally achieves more stable and accurate results.
Interestingly, our results indicate that RGB-BRS

achieves best overall quantitative scores for image matting
with or without Lc. This finding is helpful for the com-
munity as backpropagating refinement has not been imple-
mented on the task of image matting before. However,
RGB-BRS does introduce additional inference time and
memory consumption. In a later section, we show a detailed
report on Seconds Per Click (SPC) for all backpropagating
refinement settings so the trade-off between accuracy and
efficiency can be decided by the user.

2.3. Depth estimation

We compute the following standard metrics for the task
of depth estimation: δ1−3, Abs Rel, Sq Rel, RMSE and
RMSElog. We only report results on δ1 in the main paper
due to the space limit. Here we report the AUC computed
on each metric over the total number of clicks as well as the
best score achieved in the total number of clicks. Table 9
shows that the G-BRS-bmconv layer achieves the best met-
rics in all settings and Lc provides consistent improvement.

3. Running time analysis
Inference speed is an important factor for interactive ap-

plications. In this section, we provide the Seconds Per Click
(SPC) measured for all backpropagating refinement settings
using the proposed Lc. We select 100 test instances from
each dataset and perform 10 clicks on each instance. A PC
with an AMD Ryzen Threadripper 1920X CPU and a RTX
2080 Ti GPU is used in this experiment. Tables 10-14 show
the obtained SPC for all backpropagating refinement set-
tings. First, We see that the overall difference between the
inference time of different G-BRS layers is very small. In
addition, the additional inference time for inserting multiple
G-BRS layers is very small, which makes the usage of mul-
tiple G-BRS layers more desirable if it can lead to improve-
ment in performance. As expected, RGB-BRS has consid-
erably higher inference time and previous experiments show
that it only achieves better performance in the task of image
matting. For the task of semantic segmentation, we recog-
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nize that the obtained inference time is not ideal for real-
time interactive responses. This is due to our selection of
a state-of-the-art architecture that prioritizes accuracy over
efficiency. Our experiments show that our approach can ef-
fectively improve results of top-performing models. As a
result, users have the flexibility to apply our approach to
other architectures and design the G-BRS configuration to
accommodate the specific needs of their applications.

4. Qualitative Comparisons
To compare the performance of backpropagating refine-

ment using our proposed G-BRS layers with the previously
proposed channel-wise scale and bias as auxiliary variables
by f -BRS, we select the G-BRS-bmconv layer and the G-
BRS-sb layer (channel-wise s and b) for qualitative com-
parison.

For interactive segmentation, we compare with the prior
approach f -BRS directly as the G-BRS-sb layer for this task
is equivalent to the solution proposed by f -BRS. Figure 2
shows that the G-BRS-bmconv layer can make more de-
tailed refinement. Since the original f -BRS was not imple-
mented for the other applications, we make the best compar-
ison possible by comparing the proposed G-BRS-bmconv
layer with the G-BRS-sb layer. We emphasize that the spe-
cific G-BRS configurations for various architectures as well
as the utilized consistency loss are part of our contribution.

For semantic segmentation, we use 3 G-BRS layers for
both G-BRS-sb and G-BRS-bmconv for the best perfor-
mance as shown in Tables 7-8. Figure 3 shows that both
G-BRS-sb and G-BRS-bmconv achieve high accuracy on
Cityscapes while the G-BRS-bmconv layer is capable of
making more detailed refinement. Figure 4 shows that in
a more challenging semantic segmentation dataset (Mapil-
lary Vista) with 65 classes, the G-BRS-bmconv layer out-
performs the G-BRS-sb layer with a larger margin. For im-
age matting, we use 3 G-BRS layers as well for the best
performance (Figure 1). Figure 5 shows that the G-BRS-
bmconv layer is capable of refining alpha matte at a more
detailed level. For depth estimation, Figure 6 shows that
the G-BRS-sb layer is more susceptible to undesired global
error while the G-BRS-bmconv layer produces better depth
maps with both global and localized accuracy.



#Layers
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc

RGB-BRS sb bmsb bmsb-m bmconv

L0 0.1 · 1
2

9 - - - - 0.1 · 1
2

9 - - - -

L1 - 0.1 · 1
2

1
0.1 · 1

2

4
0.1 · 1

2

2
0.1 · 1

2

9 - 0.1 · 1
2

6
0.1 · 1

2

5
0.1 · 1

2

4
0.1 · 1

2

9

Table 1. Learning rate settings for the backpropagating refinement layouts on SBD.

#Layers
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc

RGB-BRS sb bmsb bmsb-m bmconv

L0 0.1 · 1
2

8 - - - - 0.1 · 1
2

9 - - - -
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2
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2
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2
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0.1 · 1

2
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L3 - 0.1 · 1
2

4
0.1 · 1

2

4
0.1 · 1

2

3
0.1 · 1

2

8 - 0.1 · 1
2

6
0.1 · 1

2

7
0.1 · 1

2

5
0.1 · 1

2
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Table 2. Learning rate settings for the backpropagating refinement layouts on Cityscapes.

#Layers
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc

RGB-BRS sb bmsb bmsb-m bmconv
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0.1 · 1

2

3
0.1 · 1

2

3
0.1 · 1

2

7 - 0.1 · 1
2

3
0.1 · 1

2

5
0.1 · 1

2

3
0.1 · 1

2

9

L2 - 0.1 · 1
2

2
0.1 · 1

2

3
0.1 · 1

2

2
0.1 · 1

2

7 - 0.1 · 1
2

4
0.1 · 1

2

6
0.1 · 1

2

5
0.1 · 1

2

9

L3 - 0.1 · 1
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0.1 · 1

2
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Table 3. Learning rate settings for the backpropagating refinement layouts on Mapillary Vista.

#Layers
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc

RGB-BRS sb bmsb bmsb-m bmconv

L0 0.1 · 1
2

9 - - - - 0.1 · 1
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9 - - - -

L1 - 0.1 · 1
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7 - 0.1 · 1
2

7
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0.1 · 1

2
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Table 4. Learning rate settings for the backpropagating refinement layouts on Composition-1k.

#Layers
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc
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7 - - - - 0.1 · 1
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8 - - - -
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2
0.1 · 1

2
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0.1 · 1

2

2
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2
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2
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2
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2

2
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Table 5. Learning rate settings for the backpropagating refinement layouts on NYU-Depth-V2.



#Layers
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc

RGB-BRS sb bmsb bmsb-m bmconv

L0 (AUC) 0.8506 - - - - 0.8251 - - - -

L1 (AUC) - 0.8521 0.8591 0.8589 0.8594 - 0.8427 0.8529 0.8457 0.8322

L0 (mIoU∗) 0.9051 - - - - 0.8605 - - - -

L1 (mIoU∗) - 0.9083 0.9162 0.9169 0.9181 - 0.8931 0.9117 0.9052 0.8867

Table 6. Area Under Curve (AUC) computed using mIoU and maximum mIoU achieved in total number of clicks (mIoU∗) on SBD for all
backpropagating refinement settings.

#Layers
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc

RGB-BRS sb bmsb bmsb-m bmconv

L0 (AUC) 0.8820 - - - - 0.8678 - - - -

L1 (AUC) - 0.8847 0.8909 0.8893 0.8964 - 0.8787 0.8849 0.8800 0.8889

L2 (AUC) - 0.8870 0.8924 0.8912 0.8962 - 0.8806 0.8859 0.8826 0.8856

L3 (AUC) - 0.8872 0.8932 0.8944 0.8966 - 0.8795 0.8862 0.8826 0.8733

L0 (mIoU∗) 0.8965 - - - - 0.8873 - - - -

L1 (mIoU∗) - 0.8943 0.9019 0.9003 0.9080 - 0.8917 0.8966 0.8936 0.9028

L2 (mIoU∗) - 0.8986 0.9049 0.9005 0.9070 - 0.8924 0.8996 0.9006 0.9055

L3 (mIoU∗) - 0.9002 0.9049 0.9055 0.9083 - 0.8973 0.9006 0.9011 0.9000

Table 7. Area Under Curve (AUC) computed using mIoU and maximum mIoU achieved in total number of clicks (mIoU∗) on Cityscapes
for all backpropagating refinement settings.

#Layers
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc

RGB-BRS sb bmsb bmsb-m bmconv

L0 (AUC) 0.6752 - - - - 0.6543 - - - -

L1 (AUC) - 0.7517 0.7521 0.7481 0.7680 - 0.7242 0.7154 0.7116 0.7270

L2 (AUC) - 0.7624 0.7659 0.7640 0.7774 - 0.7360 0.7301 0.7308 0.7420

L3 (AUC) - 0.7676 0.7714 0.7708 0.7791 - 0.7369 0.7391 0.7380 0.7109

L0 (mIoU∗) 0.7266 - - - - 0.7169 - - - -

L1 (mIoU∗) - 0.7896 0.7918 0.7909 0.8148 - 0.7802 0.7620 0.7563 0.7795

L2 (mIoU∗) - 0.8034 0.8092 0.8048 0.8213 - 0.7978 0.7859 0.7851 0.8019

L3 (mIoU∗) - 0.8101 0.8153 0.8154 0.8215 - 0.7967 0.7919 0.7936 0.7868

Table 8. Area Under Curve (AUC) computed using mIoU and maximum mIoU achieved in total number of clicks (mIoU∗) on Mapillary
Vista for all backpropagating refinement settings.



Figure 1. SAD, MSE, Grad and Conn on Composition-1k for image matting. Results denoted with Lc are obtained using the consistency
loss.

Metrics
w Lc

RGB-BRS sb bmsb bmsb-m bmconv

w/o Lc

RGB-BRS sb bmsb bmsb-m bmconv

AUCδ1 ↑ 0.9610 0.9554 0.9560 0.9555 0.9628 0.9592 0.9549 0.9556 0.9552 0.9623

AUCδ2 ↑ 0.9914 0.9904 0.9906 0.9902 0.9917 0.9908 0.9900 0.9904 0.9901 0.9912

AUCδ3 ↑ 0.9974 0.9972 0.9974 0.9972 0.9976 0.9974 0.9971 0.9974 0.9972 0.9975

AUCAbsRel ↓ 0.0565 0.0636 0.0628 0.0633 0.0555 0.0578 0.0640 0.0630 0.0636 0.0559

AUCSqRel ↓ 0.0289 0.0326 0.0321 0.0332 0.0281 0.0299 0.0335 0.0325 0.0333 0.0289

AUCRMSE ↓ 0.2512 0.2722 0.2688 0.2726 0.2487 0.2574 0.2741 0.2702 0.2733 0.2512

AUCRMSE log ↓ 0.0861 0.0940 0.0927 0.0938 0.0849 0.0880 0.0946 0.0931 0.0941 0.0857

δ1
∗ ↑ 0.9830 0.9752 0.9765 0.9754 0.9833 0.9821 0.9745 0.9761 0.9752 0.9827

δ2
∗ ↑ 0.9960 0.9942 0.9943 0.9940 0.9959 0.9957 0.9941 0.9957 0.9942 0.9941

δ3
∗ ↑ 0.9987 0.9982 0.9983 0.9982 0.9986 0.9988 0.9982 0.9986 0.9983 0.9982

AbsRel∗ ↓ 0.0375 0.0472 0.0450 0.0467 0.0372 0.0384 0.0475 0.0453 0.0467 0.0378

SqRel∗ ↓ 0.0151 0.0210 0.0203 0.0221 0.0151 0.0157 0.0213 0.0208 0.0214 0.0158

RMSE∗ ↓ 0.1858 0.2191 0.2131 0.2181 0.1876 0.1894 0.2200 0.2134 0.2182 0.1898

RMSE log∗ ↓ 0.0627 0.0749 0.0726 0.0744 0.0627 0.0639 0.0753 0.0729 0.0744 0.0635

Table 9. Area Under Curve (AUC) computed using various depth estimation metrics and maximum scores achieved in total number of
clicks (denoted with ”*”) on NYU-Depth-V2 for all backpropagating refinement settings. Since BTSNet has a G-BRS layout that only
contains 1 insertion, we omit the #layers in this table. For clarification, RGB-BRS does not utilize G-BRS layers and other G-BRS layout
contains 1 G-BRS layer.



#Layers RGB-BRS G-BRS-sb G-BRS-bmsb G-BRS-bmsb-m G-BRS-bmconv

L0 1.542 - - - -

L1 - 0.687 0.601 0.450 0.583

Table 10. SPC for all backpropagating refinement layouts with Lc on SBD.

#Layers RGB-BRS G-BRS-sb G-BRS-bmsb G-BRS-bmsb-m G-BRS-bmconv

L0 8.362 - - - -

L1 - 5.627 5.641 5.633 5.633

L2 - 5.649 5.652 5.665 5.661

L3 - 5.691 5.716 5.718 5.727

Table 11. SPC for all backpropagating refinement layouts with Lc on Cityscapes.

#Layers RGB-BRS G-BRS-sb G-BRS-bmsb G-BRS-bmsb-m G-BRS-bmconv

L0 8.125 - - - -

L1 - 5.153 5.133 5.145 5.134

L2 - 5.159 5.153 5.165 5.159

L3 - 5.222 5.224 5.233 5.231

Table 12. SPC for all backpropagating refinement layouts with Lc on Mapillary Vista.

#Layers RGB-BRS G-BRS-sb G-BRS-bmsb G-BRS-bmsb-m G-BRS-bmconv

L0 2.473 - - - -

L1 - 1.350 1.338 1.347 1.344

L2 - 1.348 1.346 1.359 1.355

L3 - 1.360 1.367 1.388 1.375

Table 13. SPC for all backpropagating refinement layouts with Lc on Composition-1k.

#Layers RGB-BRS G-BRS-sb G-BRS-bmsb G-BRS-bmsb-m G-BRS-bmconv

L0 3.205 - - - -

L1 - 2.040 2.040 2.045 2.055

Table 14. SPC for all backpropagating refinement layouts with Lc on NYU-Depth-V2.



Input image G-BRS-sb (f -BRS) G-BRS-bmconv Ground truth

Figure 2. Qualitative comparison between performance of the G-BRS-sb (f -BRS) layer and our G-BRS-bmconv layer for the task of
interactive segmentation on SBD.



Input image G-BRS-sb G-BRS-bmconv Ground truth

Figure 3. Qualitative comparison between performance of the G-BRS-sb layer and our G-BRS-bmconv layer for the task of semantic
segmentation on Cityscapes. Since both methods are highly accurate with G-BRS-bmconv providing more refined details, we highlight
the differences in the yellow zoomed window. Invalid labels are shown in black. Best viewed in magnification.

Input image G-BRS-sb G-BRS-bmconv Ground truth

Figure 4. Qualitative comparison between performance of the G-BRS-sb layer and our G-BRS-bmconv layer for the task of semantic
segmentation on Mapillary Vista. Invalid labels are shown in black.



Input image G-BRS-sb G-BRS-bmconv Ground truth

Figure 5. Qualitative comparison between performance of the G-BRS-sb layer and our G-BRS-bmconv layer for the task of image matting
on Composition-1k.



Input image G-BRS-sb G-BRS-bmconv Ground truth

Figure 6. Qualitative comparison between performance of the G-BRS-sb layer and our G-BRS-bmconv layer for the task of depth estimation
on NYU-Depth-V2. Invalid region is shown in black in the ground truth.
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