
Appendix
This supplementary document is organized as follows:

• Section A introduces the symbols utilized in this work.

• Section B analyzes the heterophily and homophily in the Visual Genome dataset.

• Section C shows more explanations of methodological details including the difference between ART and current MP

modules in Section C.1.1, and the initialization of γu in Section C.1.2.

• Section D provides more details of experiments including implementation details in Section D.1, the details of baseline

in Section D.2.

A. Notations
Table 1 summarizes the symbols used in this work. Note that the nodes and edges denote the objects and relationships in

a scene graph, respectively.

Symbols Definitions

G=(V, E) a graph G with the node set V and the edge set E
xi a feature vector of the node vi
xij a feature vector extracted from the union area between two nodes vi and vj
rij the edge between two nodes vi and vj

Ni the set of neighbors (excluding vi) of node vi in graph G
N s

i the set of neighbors (excluding vi) whose class is the same as vi
Nrij the set of neighbors (excluding rij) of the edge rij in graph G
N s

rij the set of neighbors (excluding rij) whose class is the same as rij

h(GV) the node homophily ratio of the graph G
h(GE) the edge homophily ratio of the graph G
Af a linear fusion function that obtains the normalized contextual coefficient

Ah a multi-modal fusion function that obtains the normalized contextual coefficient

σ a non-linear activation function

U the number of ART layers

‖·‖ the cardinality operator

|·| the absolute operator

Table 1. The definitions of the major symbols.

B. Heterophily and Homophily in Visual Genome
Given a set of node classes, the homophily describes the tendency of a node to have the same class as its neighbors, and

the heterophily depicts the tendency of a node to have different classes as its neighbors. Specifically, [6] proposed a metric

to measure the level of homophily of nodes in a graph. The metric can be extended to SGG as follows:

h(GV) =
1

‖V‖
∑
i∈V

‖N s
i ‖

‖Ni‖ . (1)

Low homophily corresponds to high heterophily, and vice versa. Accordingly, h(GV) →1 corresponds to strong ho-

mophily, whereas h(GV) →0 indicates strong heterophily. The definition could be extended to describe the homophily and

heterophily of edges. Accordingly, the level of homophily of edges is defined as

h(GE) =
1

‖E‖
∑
rij∈E

∥∥∥N s
rij

∥∥∥∥∥Nrij

∥∥ . (2)



Figure 1. The number of images according to the homophily ratio

of nodes h(GV) in the VG dataset.

Figure 2. The number of images according to the homophily ratio

of edges h(GE) in the VG dataset.

As illustrated in Figure 1 and Figure 2 according to the homophily ratio of nodes and edges, respectively. The low

homophily ratios validate that generating informative scene graphs requires considering heterophily. To verify the effective-

ness of our HL-Net for SGG under heterophily, Table 2 and Table 3 compare the performance of HL-Net, Motifs [15], and

VtransE [16] considering node homophily and edge homophily using ResNeXt-101-FPN as the backbone, respectively. As

we can observe, HL-Net obtains the best performance on nearly all metrics. In particular, HL-Net significantly outperforms

other methods when there is high heterophily. Thus, the high performance of HL-Net demonstrates that HL-Net has clear

advantages in modeling the heterophily of SGG.

h(GV) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

Motifs [9, 15] 40.3 36.7 37.4 32.5 34.1 33.5 36.9 35.3 19.2 37.7

Vtranse [9, 16] 39.5 35.8 37.5 31.7 35.8 39.4 36.1 36.7 21.4 33.0

HL-Net 43.8 40.1 40.4 33.4 36.4 37.6 37.0 29.6 29.3 33.8

Table 2. Performance comparisons on R@100 for different h(GV) in the SGCLS task on the VG dataset.

h(GE) 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

Motifs [9, 15] 35.4 35.4 38.3 40.3 44.6 44.9 47.3 49.1 57.3 49.4

Vtranse [9, 16] 34.6 34.7 37.3 39.5 44.1 44.7 46.2 48.5 55.7 48.5

HL-Net 38.4 39.2 42.0 43.7 48.5 48.4 51.0 53.5 61.7 52.8

Table 3. Performance comparisons on R@100 for different h(GE) in the SGCLS task on the VG dataset.

C. More Explanations of Methodological Details
This section provides more explanations of the methodological details of the heterophily learning network (HL-Net).

C.1. More explanations of the ART Module
C.1.1 The difference between ART and current MP modules

As illustrated in Figure 3, current message passing networks could be categorized into two types: pairwise-based message

passing (P-MP) [7, 14] and union-based message passing (U-MP) [4, 13].

We first review the design of the P-MP [7, 10, 14]. As illustrated in Figure 3 (a), the output of the u-th layer for the

representation of the node vi could be calculated as follows:

xu+1
i = xu

i + Wzσ(
∑

j∈Ni

Af (xu
i , xuj )Wvxu

j ), (3)

Then, we explain the design of U-MP [4, 13]. U-MP utilizes the features of union areas between two nodes to calculate

the correlation between the two nodes. Generally, U-MP adopts a high-order function on context modeling and a Transform
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Figure 3. Architecture of three MP modules. � and ⊕ represent Hadamard product and element-wise addition, respectively.

module [1] to refine the contextual information. Specifically, as shown in Figure 3 (b), the output of the u-th layer for the

representation of node vi could be obtained as follows:

xu+1
i = xu

i +Transform(σ(
∑

j∈Ni

Ah(xu
i , xuj , xij)Wvxuj )), (4)

In contrast, our Pre-LN Transformer utilizes the relative spatial feature of pair-wise node to encode their correlation and

delicately arranges the layer normalization, FFN, and residual connection. As depicted in Figure 3 (c), the output of the u-th

layer for the representation of vi could be calculated as follows:

xu+1
i = zui + FFN(LN(

zui︷ ︸︸ ︷
xui +

∑
j∈Ni

Ah(xui , xu
j , xij + Bij)σ(WvLN(xj)))). (5)

Besides, we propose a new approach to obtain the final node representation. As shown in Figure 4 (a), existing works

generally refine the node representation by stacking several MP blocks and propagating the message among the layers, namely

Stacked Propagation (SP). As explained in [2], SP is related to polynomial graph filtering and not suitable to handle the task

under heterophily.

To address the above issue, we propose an adaptive graph filter (AGF) to adjustively aggregate the outputs of different

layers. The details are depicted in Figure 4 (b). Specifically, the node representation of each layer contributes to the final

output with a weight γu. As proven in [2], AGF could enable the model to pass relevant heterophilic information by allowing

γu to be negative and learned in an end-to-end fashion.
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Figure 4. The refinement of the node representation.



C.1.2 The analysis of the initialization of γu

As mentioned in Section B, most scene graphs are under high heterophily. In order to better capture this type of high-

frequency graph signal, we propose the following function based on high-pass graph filters to initialize γu as follows:

γu =
(−τ)

u−1∑U
u=1 |(−τ)

u−1|
, (6)

We proof the Eq. (6) is a high-pass graph filter when α ∈ (0, 0.5]. Let λ1 ≥ λ2 ≥ . . . ≥ λi be the eigenvalues of the

adjacent matrix. According to [5], GNN-based models can be viewed as graph filters as follows:

fγ,K(λ) =

K∑
k=0

γkλ
k (7)

Thus, we have

g(λ) = lim
K→∞

fγ,K(λ) =
∞∑
k=0

(−λτ)k

1 + τ + τ2 + · · ·+ τk
=

∞∑
k=0

(1− τ)(−λτ)k

1− τk+1 (8)

Furthermore, the derivative of g(λ) is calculated as follows:

g′(λ) =
∞∑
k=0

(1− τ)(k + 1)λk(−τ)k+1

1− τk+2

=
∞∑
c=0

− (1− τ)(2c+ 1)λ2cτ2c+1

1− τ2c+2︸ ︷︷ ︸
b2c

+
(1− τ)(2c+ 2)λ2c+1τ2c+2

1− τ2c+3︸ ︷︷ ︸
b2c+1

=

∞∑
c=0

−b2c + b2c+1

(9)

From basic spectral analysis [11], we know that λ1 = 1 and |λi| < 1, ∀i ≥ 2. Therefore, we consider three cases: (1)
λ ∈ (−1, 0), (2) λ = 0, and (3) λ ∈ (0, 1).

Case 1: λ ∈ (−1, 0)
It is obvious that −b2c + b2c+1 <0, hence, we have

g′(λ) < 0. (10)

Case 2: λ = 0

g(λ) = 1 +
∞∑
k=1

(−τλ)k

1 + τ + · · ·+ τk
⇒ g(0) = 1 (11)

For λ1, we have

g(λ1) = 1 +
∞∑
k=1

(1− τ)(−τ)k

1− τk+1

= 1 +

∞∑
r=1

− (1− τ)τ2r−1

1− τ2r︸ ︷︷ ︸
c2r−1

+
(1− τ)τ2r+1

1− τ2r+1︸ ︷︷ ︸
c2r

= 1 +
∞∑
r=1

−c2r−1 + c2r

(12)

c2r−1

c2r
=

−τ2r+1

τ (1− τ2r)
=

1− τ2r+1

τ − τ2r+1
> 1 (0 < τ < 1) ⇒ −c2r−1 + c2r < 0 ⇒ g(1) < 1 (13)



Similarly, we can rewrite Eq. (12) as follows:

g(1) = 1 +

∞∑
k=1

(1− τ)(−τ)k

1− τk+1

= 1− τ + τ2 +
∞∑
t=1

(1− τ)τ2t+1

1− τ2t+1︸ ︷︷ ︸
d2t−1

− (1− τ)τ2t+2

1− τ2t+2︸ ︷︷ ︸
d2t

= 1− τ + τ2 +

∞∑
t=1

c2t−1 − c2t > 0

(14)

Therefore, we have

0 < g(1) < 1 ⇒
∣∣∣∣g(0)g(1)

∣∣∣∣ > 1. (15)

Case 3: λ ∈ (0, 1)

b2c
b2c+1

=
(2c+ 1)

(
1− τ2c+3

)
λτ(2c+ 2) (1− τ2c+2)

>
2c+ 1

λτ(2c+ 2)
=

1

λτ
− 1

λτ(2c+ 2)
= l(c)

(16)

It is obvious that l(c) is a monotonically increasing function according to c. Therefore, if 0 < τ ≤ 0.5 ⇒ 2λτ < 1, we

have

l(0) =
1

2λτ
> 1 ⇒ l(γ) > 1 ⇒ b2c

b2c+1
> 1

(3)⇒ −b2c + b2c+1 < 0, ∀c (17)

Therefore, we have

g′(λ) < 0. (18)

To sum it up, if 0 < τ ≤ 0.5, for |λi| < 1, ∀i ≥ 2, we have∣∣∣∣ g(λi)

g(λ1)

∣∣∣∣ =
∣∣∣∣ limk→∞ fλ,k (λi)

limk→∞ fλ,k (λ1)

∣∣∣∣>1>

∣∣∣∣ λi

λ1

∣∣∣∣ (19)

Note that Eq. (19) implies that after applying the graph filter, the lowest frequency component, i.e., λ1, no longer dominates

[2]. This concludes the proof that Eq. (6) can be viewed as a high-pass graph filter.

D. The Details of Experiments
D.1. Implementation details

To facilitate a fair comparison with the majority of existing works, we utilized ResNeXt-101-FPN [3,12] as the backbone

for the OI database. We adopted both ResNeXt-101-FPN [3, 12] and VGG-16 [8] as the backbones for the VG database.

During training, we froze the layers before the ROIAlign layer and optimized the model jointly, considering the object and

relationship classification losses. We optimized HL-Net via Stochastic Gradient Descent (SGD) with momentum, with an

initial learning rate of 10−3 and a batch size of 6. For the SGDET task, we only predict the relationship between proposal

pairs with overlapped bounding boxes. The top-64 object proposals in each image were selected after per-class non-maximal

suppression (NMS) with an IoU of 0.3. Moreover, the ratio between pairs without any relationship (background pairs) and

those with relationships during training was sampled to 3:1. All experiments were performed on a Linux Machine with 48

cores, 376GB of RAM, and an NVIDIA Tesla V100 GPU with 32GB of GPU memory.



D.2. Details of the baseline

This subsection introduces the details of the baseline that is utilized in ablation studies. Specifically, the output of the u-th

layer for the i-th node representation could be obtained as follows:

xu+1
i = xu

i + Wzσ

(∑
j∈Ni

exp(wT
e

[
xui , xu

j

]
)∑

m∈Ni
exp(wT

e [xu
i , xu

m])
Wvxuj

)
, (20)

The edge feature from node vi to node vj can be obtained as follows:

rij = Wsxu+1
i 	 Woxu+1

j 	 Wu(xij + Bij). (21)
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