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A. Network Details

We first show the details in the network architecture, in-
cluding the LSTM-based temporal motion encoding and the
graph neural network. Then, we show the details in the net-
work training. The neural network is implemented using the
PyTorch [2] and PyTorch Geometric [1] libraries.

A.1. Architecture Details

LSTM-based Temporal Motion Encoding. The input and
output motion of the LSTM module are represented using
Gaussian distribution with diagonal covariance N (µ, σ2I),
where µ ∈ R3, σ ∈ R. The LSTM module is a standard
two-layer LSTM with a hidden feature dimension of 32.
Then we use a fully connected layer to predict the µ′ and σ′

based on the output feature of the LSTM.

Graph Neural Network. We show the architecture of the
graph neural network in Fig. 1 and the architectures of the
graph pyramid convolution and the GConv block in Fig. 2
and Fig. 3. The graph transformer is proposed by Shi et
al. [3]. For all the dropout blocks, the drop probability is
0.1. Ni denotes the number of nodes in the ith level of the
graph pyramid. The dimensionality of the input node fea-
ture is 11. It contains three dimensions of node position,
three dimensions of node motion of the current frame, one
dimension of the visibility, and four dimensions of the out-
put µ′ and σ′ from the LSTM module. Then the output mo-
tion vectors (µ and σ) of the graph neural network will be
used as the input historical motion vectors for future frames.
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A.2. Training Details

Loss Function. The log-likelihood loss based on per node
Gaussian distribution can be transformed as follow:
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where C1, C2 are constants. Therefore the loss function can
be simplified as:
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Thus, if the σi is a fixed value, the loss is equivalent to the
mean-squared error (MSE) loss.
Training Procedure. The whole network is trained end-
to-end. The LSTM module takes the historically predicted
motion as input, while the predicted motion is not accurate
enough at the beginning. So we use the ground truth histori-
cal motion with σ = 0 to warm up the network training. We
first train the network using ground truth historical motion
for 200 epochs. Then, we switch the input historical motion
to the network’s output and train for another 1200 epochs.
Besides, the input historical motion vectors are treated as
undifferentiable constants and detached from the computa-
tion graph. Thus the gradients of the LSTM module do not
flow back to the graph neural network. We train the network
using the Adam optimizer with a learning rate of 0.001 and
a batch size of 64. The whole training process takes about
four days using an NVIDIA RTX GeForce 2080Ti GPU.

To quantitatively evaluate the generalization ability of
our network, we train the model on the humanoids subset
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Figure 1. Architecture of the graph neural network.

Figure 2. Architecture of the Graph Pyramid Convolution in Fig. 1.

Figure 3. Architecture of the GConv block.

and test it on the animal subset for motion estimation in
Sec. 4.2. For other experiments, we use both subsets for
training to achieve better reconstruction results.

In addition, as the estimated 3D motion of the visible part
in the real world is not as perfect as the synthetic dataset,
we add random Gaussian noise to the visible motion during
network training. The noise is represented as N (µ, σ2I),
where µ = [0, 0, 0] and σ is sampled from a uniform dis-

tribution U(−0.4, 0.4). However, in the motion prediction
evaluation in Sec. 4.2 we do not add any noise.

B. Details in Multi-scale Graph Pyramid Con-
struction

We construct a 4-level multi-scale graph for message
passing among nodes. Considering that the node connec-
tivity of the first level is computed based on the Euclidean
distance, which may lead to misconnections between unre-
lated parts, we discard edges by temporal consistency. More
precisely, if the distance between two nodes changes more
than a threshold, the edge between them will be discarded.

The node features downsampling between adjacent lev-
els is performed directly by copying the node features to the
higher level, as the nodes in the (l + 1)th level are a subset
of the nodes in the lth level. In feature upsampling, the node
features of the (l+ 1)th level are assigned using the feature
of the nearest neighbor in the lth level.

The intervals between nodes from the first to the fourth
level are set to {4cm, 8cm, 16cm, 32cm} and the neigh-
bor amounts are {8, 6, 4, 3}. Besides, the distance change
threshold is set to 4cm.



Figure 4. Results of different optical flow methods when motion
blur occurs.
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Figure 5. Geometry errors on the top sequence of Fig. 6 in the
main paper. The average geometry errors over the whole sequence
are 3.44mm, 3.79mm, 3.45mm, and 3.41mm from PWC-Net to
RAFT-RGBD-noise.

C. RGB-D Based Optical Flow Prediction
We use the RAFT [5] network to estimate 2D optical

flow. The original RAFT is trained with RGB images. We
change the input dimensionality from 3 to 4 and retrain the
network using RGB-D images as input. For the depth chan-
nel, we use the inverse depth (the reciprocal of depth) as
input.

To speed up the 2D optical flow estimation in the 3D
reconstruction system, we resize the input images from
640 × 480 to 320 × 240 to compute the optical flow and
upsample the optical flow to the original resolution by bi-
linear interpolation.

D. Choice of Optical Flow
To test the robustness to flow estimation, we evaluate our

system using different optical flow settings PWC-Net [4],

Figure 6. Reconstruction results based on PWC-Net and RAFT-
RGB.

RAFT-RGB and RAFT-RGBD. Besides, we further add
Gaussian noise of N (0, 4) pixels on x and y axes to our
RAFT-RGBD optical flow. We use the top sequence of
Fig. 6 in the main paper for evaluation. The optical flow re-
sults at the 833rd frame of the sequence are shown in Fig. 4.
We can see severe motion blur occurs on the fast swinging
arm in the color image, and significant errors appear in the
optical flow of RGB-based methods (PWC-Net and RAFT-
RGB). However, since depth images do not suffer the blur
artifacts much and provide geometric information, RAFT-
RGBD generates reliable optical flow. This indicates the
benefit of involving depth in flow estimation.

For quantitative evaluation, we show the geometry er-
rors of different optical flow methods over the whole se-
quence in Fig. 5. We can see that the geometry errors of our
reconstruction method based on PWC-Net, RAFT-RGBD,
and RAFT-RGBD-noise are all low and close to each other,
which indicates that our method is robust to noise in the
optical flow. Only the reconstruction result based on the
RAFT-RGB optical flow provides a large geometry error,
which is caused by the tracking failure of the fast swing-
ing arm. We show the reconstruction results using PWC-
Net and RAFT-RGB at frame 837 (4 frames after the opti-
cal flow shown in Fig. 4) in Fig. 6. The reconstruction re-
sult of PWC-Net is better than RAFT-RGB, although they
both provide a larger optical flow error. We believe the rea-
son for this is that the optical flow errors of PWC-Net ap-
pear mainly on the torso, while those of RAFT-RGB ap-
pear on the anterior segment of the arm. In addition, errors
on the torso are more easily corrected by the learned mo-
tion prior and the regularization term in the optimization,
because there is more motion information around the torso
region where the predicted optical flow is wrong.
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