
A. Appendix
A.1. Derivation of the Estimator in Theorem 2.1

and Eqn. 6

I(Zc ! y) =

Z

Zc

P (Zc)
⇣X

y

P (y|do(Zc)) logP (y|do(Zc)))
⌘
dZc

�
X

y

Z

Zc

P (Zc)P (y|do(Zc))dZc·

log
⇣Z

Zc

P (Zc)P (y|do(Zc))dZc

⌘

=
1

Nc

NcX

i=1

X

y

⇣ 1

NxNsNz

NxX

k=1

NsX

j=1

NzX

n=1

P (y|A(ikjn),X(k))
⌘
·

log
⇣ 1

NxNsNz

NxX

k=1

NsX

j=1

NzX

n=1

P (y|A(ikjn),X(k))
⌘

�
X

y

⇣ 1

NcNxNsNz

NcX

i=1

NxX

k=1

NsX

j=1

NzX

n=1

P (y|A(ikjn),X(k))
⌘
·

log
⇣ 1

NcNxNsNz

NcX

i=1

NxX

k=1

NsX

j=1

NzX

n=1

P (y|A(ikjn),X(k))
⌘

=
1

NcNxNsNz

h NcX

i=1

X

y

⇣ NxX

k=1

NsX

j=1

NzX

n=1

P (y|A(ikjn),X(k))
⌘
·

log
⇣ 1

NxNsNz

NxX

k=1

NsX

j=1

NzX

n=1

P (y|A(ikjn),X(k))
⌘

�
X

y

⇣ NcX

i=1

NxX

k=1

NsX

j=1

NzX

n=1

P (y|A(ikjn),X(k))
⌘
·

log
⇣ 1

NcNxNsNz

NcX

i=1

NxX

k=1

NsX

j=1

NzX

n=1

P (y|A(ikjn),X(k))
⌘i

A.2. Further Implementation Details

Datasets. BA-shapes was created with a base Barabasi-
Albert (BA) graph containing 300 nodes and 80 five-node
“house”-structured network motifs. Tree-cycles were built
with a base 8-level balanced binary tree and 80 six-node
cycle motifs. Mutag [2] and NCI1 [26] are for graph classi-
fication tasks. Specifically, Mutag contains 4337 molecule
graphs, where nodes represent atoms, and edges denote
chemical bonds. It contains the non-mutagenic and mu-
tagenic class, indicating the mutagenic effects on Gram-
negative bacterium Salmonella typhimurium. NCI1 consists
of 4110 instances; each chemical compound screened for
activity against non-small cell lung cancer or ovarian cancer
cell lines. The statistics of four datasets are presented in
Table 5. Note that, we report the average number of nodes
and the average number of edges over all the graphs for the
real-world datasets.

Model architectures. For classification architectures, we
use the same setting as prior works [11, 32]. Specifically,
for node classification, we apply three layers of GCNs with
output dimensions equal to 20 and perform concatenation

Table 5. Data Statistics of Four Datasets.

DATASETS BA-SHAPES TREE-CYCLES MUTAG NCI1
#GRAPHS 1 1 4, 337 4, 110
#NODES 700 871 29 30
#EDGES 4, 110 1, 950 30 32
#LABELS 4 2 2 2

Table 6. Model Accuracy of Four Datasets (%).

DATASETS BA-SHAPES TREE-CYCLES MUTAG NCI1
ACCURACY 94.1 97.1 88.5 78.6

to the output of three layers, followed by a linear transfor-
mation to obtain the node label. For graph classification,
we employ three layers of GCNs with dimensions of 20 and
perform global max-pooling to obtain the graph representa-
tions. Then a linear transformation layer is applied to obtain
the graph label. Figure 6 (a) and 6 (b) are the model ar-
chitectures for node classification and graph classification,
receptively.

Figure 6 (c) depicts the model architecture of OphicX

for generating explanations. For the inference network, we
applied a three-layer GCN with output dimensions 32, 32,
and 16. The generative model is equipped with a two-layer
MLP and an inner product decoder. We trained the explainers
using the Adam optimizer [7] with a learning rate of 0.003
for 300epochs. Table 7 shows the detailed data splitting
for model training, testing, and validation. Note that both
classification models and our explanation models use the
same data splitting. See Table 8 for our hyperparameter
search space. Table 6 reports the model accuracy on four
datasets, which indicates that the models to be explained
are performed reasonably well. Unless otherwise stated,
all models, including GNN classification models and our
explanation model, are implemented using PyTorch 9 and
trained with Adam optimizer.

Table 7. Data Splitting for Four Datasets.

DATASETS #OF TRAINING #OF TESTING #OF VALIDATION

BA-SHAPES 300 50 50
TREE-CYCLES 270 45 45

MUTAG 3, 468 434 434
NCI1 3, 031 410 411

Negative ELBO term. The negative ELBO term is de-
fined as Eqn. 8:

9https://pytorch.org

GCN

Reparameterize
 Z

MLP

GCN

GCN GCN

Mean Log
Variance

GCN

GCN

GCN

Max
Pooling

MLP

GCN

GCN

GCN

MLP

�D��QRGH�FODVVLƉFDWLRQ �E��JUDSK�FODVVLƉFDWLRQ �F��H[SODQDWLRQ�PRGHO

Inner-Product

Figure 6. Model architectures.

Table 8. Hyperparameters and Ranges

HYPERPARAMETER RANGE

CAUSAL DIMENSION Dc {1, 2, 3, · · · , 8}
NEGATIVE ELBO �1 {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}

SPARSITY �2 {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}
FIDELITY �3 {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}

LVGAE = Eq(Z|X,A)[log p(A|Z)]�KL[q(Z|X,A) k p(Z)],
(8)

where KL[q(·) k p(·)] is the Kullback-Leibler divergence
between q(·) and p(·). The Gaussian prior is p(Z) =Q

i p(zi) =
Q

i N (zi|0,1). We follow the reparameteri-
zation trick in [8] for training.

Log-odds difference. We measure the resulting change in
the pre-trained GNNs’ outcome by computing the difference
in log odds and investigate the distributions over the entire
test set. The log-odds difference is formulated as:

�log-odds = log-odds (f(G))� log-odds (f(Gc)) (9)

where log-odds(p) = log
⇣

p
1�p

⌘
, and f(G) and f(Gc) are

the outputs of the pre-trained GNN. Figure 7 depicts the
distributions of log-odds difference over the entire test set
for the real-world datasets.

A.3. More Experimental Results
Log-odds difference on the real-world datasets. Fig-

ure 7 depicts the distributions of log-odds difference over
the entire test set for the real-world datasets. We can observe
that the log-odds difference of OrphicX is more concentrated
around 0, which indicates OrphicX can well capture the most

Table 9. Causal Evaluation (%).

Mutag NCI1
R (edge ratio) 0.7 0.8 0.9 0.7 0.8 0.9
original 77.2 78.8 83.2 77.1 81.3 85.4

deconfounder 67.1 71.5 81.5 71.6 79.2 87.3

relevant subgraphs towards the predictions by the pre-trained
GNNs.

(a) MUTAG

(b) NCI1

Figure 7. Explanation Performance with Log-Odds Difference.
OrphicX consistently achieves the best performance overall (denser

distribution around 0 is better).

More visualization results. Figure 8 plots the visual-
ized explanations of different methods on BA-shapes. The
“house” in green is the ground-truth motif that determines
the node labels. The red node is the target node to be ex-
plained. By looking at the explanations for a target node
(the instance on the left side), shown in Figure 8, OrphicX

can successfully identify the “house” motif that explains
the node label (“middle-node” in red), when K = 6, while
GNNExplainer wrongly attributes the prediction to a node
(in orange) that is out of the “house” motif. For the right
one, OrphicX consistently performs well, while Gem and
GNNExplainer both fail when K = 6. Figure 9 plots more
visualized explanations of different methods on Mutag.

house motif

k=5

Gem

GNNExp.

PGExp.

OrphicX

k=7k=6 k=5 k=7k=6

Figure 8. Explanation comparisons on BA-shapes. The “house” in green is the ground-truth motif that determines the node labels. The red
node is the target node to be explained (better seen in color).

Causal evaluation. To further verify that the generated
explanations are causal and therefore robust to distribution
shift in the confounder (i.e., the node attributes X), we con-
struct harder versions of both datasets. Specifically, we use
k-means (k=2) to split the dataset into two clusters according
to the node attributes. In Mutag, we use the cluster with
3671 graph instances for explainer training and validation;
we evaluate the explaining accuracy of the trained explainer
on the other cluster with 665 instances. In NCI1, we use
the cluster with 3197 graph instances to train an explainer,
in which the training set contains 2558 instances and the
validation set contains 639 instances; the explaining accu-
racy is evaluated with the other cluster with 906 instances.
See Table 9 for details. We can observe that our approach is
indeed robust to the distribution shift in the confounder.

Information flow measurements. To validate Theo-
rem 2.1, we evaluate the information flow of the causal
factors (Zc = Z[1 : 3]) and the spurious factors (Zs = Z[4 :
16]) corresponding to the model prediction, respectively. Fig-

ure 10a shows that, as desired, the information flow from
the causal factors to the model prediction is large while the
information flow from the spurious factors to the prediction
is small.

Ablation study. We inspect the explanation performance
for our framework as an ablation study for the loss function
proposed. We empirically prove the need for different forms
of regularization leveraged by the OrphicX loss function. In
particular, we compute the average explanation accuracy of 3
runs. Table 10 shows the explanation accuracy of removing
a particular regularization term for Mutag and NCI1, respec-
tively. We observe considerable performance gains from
introducing the VGAE ELBO term, sparsity, and fidelity
penalty. In summary, these results empirically motivate the
need for different forms of regularization leveraged by the
OrphicX loss function.

Efficiency evaluation. OrphicX, Gem, and PGExplainer
can explain unseen instances in the inductive setting. We
measure the average inference time for these methods. As

Gem GNNExplainer

p=0.1579 p=0.9860

PGExplainer

p=0.9760

OrphicX

p=0.9953p=0.7684

Original

p=0.9787 p=0.5827 p=0.3588p=0.9956p=0.9594

O

Br
C
H
N

S

p=0.6640 p=0.9495 p=0.9927p=0.9997p=0.9621

p=0.6534 p=0.9966 p=0.0074p=0.1895p=0.8494

p=0.0007 p=0.3932 p=0.0015p=0.0007p=0.1678

Figure 9. Explanation Visualization (MUTAG): p is the corresponding probability of being classified as Mutagenic class by the pre-trained
GNN. The graphs in the first column are the target instances to be explained. The solid edges in other columns are identified as ‘important’
by corresponding methods. The closer the probability to that of the target instance, the better the explanation is.

Table 10. Ablation Studies for Different Regularization Terms (%).

TYPE CAUSAL ELBOSPARSITYFIDELITYMUTAG NCI1
INFLUENCE

OrphicX X X X X 0.854 0.832
A X X X 0.829 0.633
B X X X 0.804 0.824
C X X X 0.594 0.633

GNNExplainer explains an instance at a time, we measure
its average time cost per explanation for comparisons. As

reported in Table 11, we can conclude that the learning-
based explainers such as OrphicX, Gem, and PGExplaienr
are more efficient than GNNExplainer. These experiments
were performed on an NVIDIA GTX 1080 Ti GPU with an
Intel Core i7-8700K processor.

A.4. More related work on GNN interpretation
Several recent works have been proposed to provide ex-

planations for GNNs, in which the most important features
(e.g., nodes or edges or subgraphs) of an input graph are se-
lected as the explanation to the model’s outcome. In essence,
most of these methods are designed for generating input-

(a) MUTAG

(b) MUTAG w/o Causal Term

Figure 10. Information Flow Measurements. Figure 10a reports
the information flow measurements in the hidden space, where i
denotes the ith dimension. Figure 10b reports the ones while the
causal influence term was removed from the loss function.

Table 11. Explanation Time of Different Methods (Per Instance
(ms)).

DATASETS BA-SHAPES TREE-CYCLES MUTAG NCI1
OrphicX 0.61 2.31 0.01 0.02

GEM 0.67 0.50 0.05 0.03
GNNEXPLAINER 260.2 206.5 253.2 262.4
PGEXPLAINER 6.9 6.5 5.5 5.4

dependent explanations. GNNExplainer [32] searches for
soft masks for edges and node features to explain the pre-
dictions via mask optimization. [21] extended explainability
methods designed for CNNs to GNNs. PGM-Explainer [25]
adopts a probabilistic graphical model and explores the de-
pendencies of the explained features in the form of condi-
tional probability. SubgraphX explores the subgraphs with
Monte Carlo tree search and evaluates the importance of the
subgraphs with Shapley values [35]. In general, these meth-
ods explain each instance individually and can not generalize
to the unseen graphs, thereby lacking a global view of the

target model.
A recent study has shown that separate optimization for

each instance induces hindsight bias and compromises faith-
fulness [23]. To this end, PGExplainer [14] was proposed to
learn a mask predictor to obtain edge masks for providing in-
stance explanations. XGNN [34] was proposed to investigate
graph patterns that lead to a specific class. GraphMask [23]
is specifically designed for GNN-based natural language
processing tasks, where it learns an edge mask for each in-
ternal layer of the learning model. Both these approaches
require access to the process by which the target model pro-
duces its predictions. As all the edges in the dataset share
the same predictor, they might be able to provide a global
understanding of the target GNNs. Our work falls into this
line of research, as our objective is to learn an explainer that
can generate compact subgraph structures contributing to the
predictions for any input instances. Different from existing
works, we seek faithful explanations from the language of
causality [19].

