
Appendix
This supplementary document is organized as follows:

• Section A shows more details about the smoothed �p-norm distance metric.

• Section B provides the proof that the �p-based graph regularization is upper bounded by Eq. (12) in the main paper.

• Section C describes the extension and implementation details of U-MP.

• Section D first visualizes the attention maps of different GMP modules in Figure 1. Then, the qualitative comparisons

between RU-Net and MOTIFS [4] are illustrated in Figure 2.

A. Smoothed �p-norm Distance Metric
To improve the robustness against spurious correlations between nodes, we utilize a smoothed �p-norm distance metric [2]

as follows:

κε
p(x) �

{
εp−2|x|2, |x| ≤ ε
2
p |x|p − 2−p

p εp, |x| > ε
, (1)

where ε > 0 and 0 < p ≤ 2. Here, the generalized �p function κε
p(x) is a smoothed approximation of κp(x) � |x|p with a

regional quadratic envelope around its nondifferentiable point x = 0 for 0 < p < 2. Such a smoothed extension can also be

viewed as a generalization of the Huber penalty [1] which is a special case of κε
p(x) with p = 1. Furthermore, the relationship

between κε
p(x) and κp(x) is summarized as follows 1:

0 ≤ κp(x)− κε
p(x) ≤

(2− p)εp

2
, x ∈ R. (2)

The above inequality Eq. (2) indicates that κε
p(x) is always smaller than κp(x), and the distance between them increases for

large ε or small p and vanishes at ε = 0 or p = 2. For this reason, κε
p(x) places much less emphasis for large |x| and is more

robust against large outliers than κp(x). Besides this merit, the cutoff parameter ε decides how much we retain the quadratic

behaviour. Therefore, a lot of flexibility can be obtained by adjusting the parameters ε and p, leading to a better robustness

for accommodating various kinds of outlier.

B. Proof of Eq. (12) in the Main Paper
Proposition 1 Suppose that ε > 0, τ > 0 and 0 < p < 2. Then, Gp(Y ,L) can be upper-bounded by

Gp(Y ,L) ≤
∑

(i,j)∈E [A]ij [Ω]ij‖yi − yj‖22 + const. (3)

where const. is a constant term irrelevant to the optimization variable and

[Ω]ij �
{
εp−2, ‖yi − yj‖2 ≤ ε

‖yi − yj‖p−2
2 , otherwise.

(4)

Proof : Our proof is equivalent to showing that

Kε
p(x) = min

ω≥ε
g(ω) � |ω|p−2|x|2 + 2− p

p
(|ω|p − εp) (5)

and the unique minimizer is given by

ω� =

{
ε, |x| ≤ ε

|x|, |x| > ε
. (6)

1If x = 0 or |x| > ε, the inequality (2) holds trivially. If 0 < |x| < ε, it can be readily derived by checking that θ(x) � κp(x) − κε
p(x) is

nondecreasing resp. over both [−ε, 0) and (0, ε], eventually resulting in θ
(
0+

)
= 0 ≤ θ(x) ≤ θ(±ε) =

(2−p)εp

2p
, as desired



The above fact can be verified under two cases: (i) |x| ≤ ε and (ii) |x| > ε. First, for ω ≥ |x|, we have

g′(ω) = (2− p)ω|ω|p−2

(
1−

∣∣∣x
ω

∣∣∣2) ≥ 0,

which implies that g(ω) is a non-decreasing function when ω ≥ |x| and hence the minimizer of g(ω) over ω ≥ ε ≥ |x|, i.e.,

Case (i), is ω� = ε. Similarly, the minimizer of g(ω) over ω ≥ |x| > ε is ω� = |x|. In addition, it can be shown that g(ω) is

strictly convex within ε ≤ ω < |x| by noting that

g′′(ω) = (2− p)ω|ω|p−3

[
(3− p)

∣∣∣x
ω

∣∣∣2 + (p− 1)

]
≥ (2− p)ω|ω|p−3 > 0.

This admits an optimal solution ω� = |x| of minimizing g(ω) over ε ≤ ω ≤ |x| by checking g′(ω) = 0. Therefore, the

minimizer of Eq. (5) under Case (ii) is ω� = |x|. The above two cases result in Eq. (6). Then, substituting ω∗ back into g(ω)
directly leads to the left-hand side of Eq. (5). Then, we can derive that

Gp =
∑

(i,j)∈Es

[A]ijκ
ε
p

(‖yi − yj‖2
)

≤
∑

(i,j)∈Es

[A]ij [Ω]ij‖yi − yj‖22 + const.,
(7)

as desired.

C. Extension and Implementation Details of U-MP
We can define the layer-wise GLD problem to refine the node representation for each U-MP layer. Specifically, the

layer-wise GLD problem for the k + 1-th U-MP layer can be formulated as follows:

L
GLD

(Y k+1,Lk+1) �
∥∥∥Y k+1 −F(Y k;W k)

∥∥∥2
F
+ G

GLR
(Y k+1,Lk+1) , (8)

Here, F(Y k;W k) denotes a function (parameterized by W k) of Y k. For example, we can have F(Y k;W k) = MLP[Y k;W k],
i.e., a multi-layer perceptron with weights W k. In this way, a transformation weight matrix W k can be integrated into the

k + 1-th U-MP layer as follows: ⎧⎨
⎩

Ã
(k+1)

= Normalize(H(Ŷ
k
))

Y (k+1) = ReLU( 13 (Ŷ
(k)

+ Ã
(k+1)

Ŷ
(k)

+ Ŷ
(k)

))
, (9)

where

Ŷ
k
= F(Y k;W k). (10)

In addition, to choose an appropriate value of ε and efficiently reweight the attention map, we set the size of the output node

representation in each U-MP layer to O and utilize the softmax function to normalize it.

D. Qualitative Results
As shown in the first row of Figure 1, Graph-RCNN [3] produces similar attention weights for each node; therefore,

elements in each column of its attention map are similar. Our baseline model tends to produce high attention weight for

two spatially nearby nodes, e.g., chair and umbrella1, which results in ambiguous object representations. Compared with

Graph-RCNN [3] and the baseline model, RU-Net produces a more reasonable attention map that has medium weight for

two disparate nodes, e.g., chair and umbrella1 and has high weight for two nodes with the same object categories, e.g.,

umbrella1 and umbrella2. In the first row of Figure 2, it is shown that RU-Net achieves more diverse and accurate relationship

predictions than MOTIFS [4] for the four triplets with the same object categories, i.e., man and bike.
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Figure 1. Qualitative comparisons between RU-Net, Graph-RCNN [3], and our baseline model in the SGCLS setting. Specifically, we

show the attention maps and node prediction results by different models. The red color indicates misclassified objects. The red dotted box

denotes the spurious correlations between nodes. Best viewed in color.
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Figure 2. Qualitative comparisons between RU-Net and MOTIFS [4] in the PREDCLS setting. Specifically, we compare the relationship

predictions between MOTIFS [4] and RU-Net. The red color indicates misclassified relationships. The gray color highlights missing

relationship annotations. Best viewed in color.
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