
Supplemental Materials for “SAR-Net: Shape Alignment and Recovery Network
for Category-level 6D Object Pose and Size Estimation”

Haitao Lin Zichang Liu Chilam Cheang Yanwei Fu† Guodong Guo Xiangyang Xue†

A. Social Impact

This study helps the tasks of augmented reality, scene
understanding, and robotic manipulation. Our method
grants the generalization ability of robots to grasp novel but
category-known objects in open-environment tasks such as
home care services. The efficacy of our proposed frame-
work should facilitate the deployment of such an algorithm
on various real-world scenarios of robotic tasks, and con-
tribute to the development of robotic research communities.

B. Network Architecture of SAR-Net

Our network uses the PointNet-like [11,17] architecture.
We use two types of general encoders as shown in Tab. 1
and Tab. 2, where V is the vertex number of input point
cloud with 3 channels, and “conv1d” is the 1-dimensional
convolutional filter. “IN” indicates the Instance Normal-
ization. Encoder1(·) and Encoder2(·) mean choosing the
output of Index (·) from their unit. Also, we define the gen-
eral decoder as in Table 3, Decoder1(·) takes C channels
of tensors as inputs. The architecture of three main compo-
nents are shown in Tab. 4, Tab. 5 and Tab. 6, respectively.
Notably, cate indicates the number of total categoriess.

Table 1. The network architecture of Encoder1 unit.

Index Input Operation Output Shape
(1) Input Input 3× V

(2) (1) conv1d(3→64),IN,ReLU 64× V

(3) (2) conv1d(64→64),IN,ReLU 64× V

(4) (3) conv1d(64→128),IN,ReLU 128× V

(5) (4) conv1d(128→256),IN,ReLU 256× V

(6) (5) conv1d(256→512),IN,ReLU 512× V

(7) (4) Maxpool 128× 1

(8) (5) Maxpool 256× 1

(9) (6) Maxpool 512× 1

(10) (7,8,9) Concatenate 896× 1

†indicates corresponding author.

Table 2. The network architecture of Encoder2 unit.

Index Input Operation Output Shape
(1) Input Input 3× V

(2) (1) conv1d(3→64),ReLU 64× V

(3) (2) conv1d(64→64),ReLU 64× V

(4) (3) conv1d(64→64),ReLU 64× V

(5) (4) conv1d(64→128),ReLU 128× V

(6) (5) conv1d(128→1024),ReLU 1024× V

(7) (6) AveragePool 1024× 1

Table 3. The network architecture of Decoder1 unit.

Index Input Operation Output Shape
(1) Input Input C × V

(2) (1) conv1d(C→512), ReLU 512× V

(3) (2) conv1d(512→256), ReLU 256× V

(4) (3) conv1d(256→128), ReLU 128× V

(5) (4) conv1d(128→64), ReLU 64× V

(6) (5) conv1d(64→3× cate) 3× cate× V

(7) (6) output branch selection 3× V

Table 4. The encoder-decoder architecture of Shape Alignment
component ESA.

Index Input Operation Output Size
(1) Input Observed Points P 3×No

(2) Input Template Points Kc 3×Nk

(3) (1) Encoder1(10) 896× 1

(4) (2) Encoder2(4) 64×Nk

(5) (2) Encoder2(7) 1024× 1

(6) (2,3,4,5) Concatenate 1987×Nk

(7) (6) Decoder1(1987) 3×Nk

Table 5. The encoder-decoder architecture of Symmetric Corre-
spondence component ESC .

Index Input Operation Output Size
(1) Input Observed Points P 3×No

(2) Input Template Points Kc 3×Nk

(3) (1) Encoder1(10) 896× 1

(4) (2) Encoder2(7) 1024× 1

(5) (1,3,4) Concatenate 1923×No

(6) (5) Decoder1(1923) 3×No

Table 6. The encoder-decoder architecture of Object Center and
Size component EOCS .

Index Input Operation Output Size
(1) Input Observed Points P 3×No

(2) Input Symmetric Points P̃ ′ 3×No

(3) Input Template Points Kc 3×Nk

(4) (1,2) Concatenate & Centralize 3× 2No

(5) (4) Encoder1(10) 896× 1

(6) (3) Encoder2(7) 1024× 1

(7) (4,5,6) Concatenate 1923× 2No

(8) (7) Decoder1(1923) 3× 2No

(9) (5) Linear(896→512), ReLU 512× 1

(10) (9) Linear(512→256), ReLU 256× 1

(11) (10) Linear(256→64), ReLU 64× 1

(12) (11) Linear(64→3× cate) 3× cate× 1

(13) (12) output branch selection 3× 1

C. Train Details for 3D-GCN

Training data generation. To purify the point cloud back-
projected from the masked depth, we utilize the 3D seg-
mentation network 3D-GCN [14] to filter out the outliers
belonging to the background. The synthetic training data
NOCS CAMERA provides mixed real and synthetic data
by rendering virtual objects on real backgrounds. Given
ground-truth object masks, it is easy to process such a
dataset to obtain the training data. For object detection or
segmentation, the bounding box or mask is generally used
for representing the 2D predicted results. To make the 3D
segmentation network compatible with both widely used in-
put of box and mask, we process the data to simulate these
two kinds of 2D predicted results as in Fig. 1. In particular,

(1) For mask results, they are represented by polygons,
which are limited to handling the objects with holes like
the mug in Fig. 1. Thus, the points back-projected from
such the masked depth should contain points from back-
ground. We generate the training data by filling the hole of
the ground-truth mask and then dilating the mask by 0 to 5
pixels to simulate the imperfect segmentation.

(2) For box results, it may usually come from a detec-
tion network like YOLOv3 [18]. The box regions contain
background points and object points. We also randomly
transform this region to simulate the imperfect detection
results. Concretely, obtaining the ground-truth box region
Bgt = (xleft, ytop, xright, ybottom) of the target object, we
transform this region into (xleft + δ1, ytop + δ2, xright +
δ3, ybottom + δ4), where (xleft, ytop) and (xright, ybottom)
indicates the left-top and right-bottom coordinates of the
corners of bounding box Bgt, respectively; {δn}4n=1 ranges
from -5 to 15 pixels. At the data generation stage, the prob-
ability of using (1) and (2) is 0.5, separately.

Given the generated dataset, we train a single 3D-GCN
model to segment points cloud from six categories. To
make 3D-GCN robust to real scenarios, zero-mean Gaus-

sian noise with standard deviation σ = (σx, σy, σz) is also
added. We use σx = σy = 0.1mm and σx = 1mm in our
experiment.
Training details. We keep the same configurations for the
segmentation task as in [14]. The 3D-GN is trained on 6
NVIDIA RTX2080Ti GPUs with a batch size of 48. We set
the initial learning rate as 0.0012 and multiply it by 0.75 for
every epoch. The network takes about 5 hours to converge.
The 3D-GCN only has negligible 1.69M parameters.

Dilate 0～5pixels

Random crop

-5～15pixels

R
G

B
D

M
a

sk

Hole

filling

Bounding

box

Gaussian

Noise

back-project

back-project

object point cloud background point cloud

Figure 1. Training data generation. We use the NOCS CAMERA
dataset to generate the data composed of object and background
point clouds for training 3D-GCN.

D. Different 2D Input Representation
Our framework is applicable to the input of either a 2D

bounding box or segmentation mask. Thus, we also re-
port the results on the REAL275 by using the 2D detected
bounding boxes as inputs, denoted as SAR-Net(box). As
shown in the Tab. 7, our SAR-Net(box) still achieves com-
parable results, especially on the metrics for 6D pose re-
covery. Taking detected boxes as inputs saves inference
times and achieves higher real-time performance. The base-
line methods FS-Net takes the 2D detected box as input
and achieves real-time performance. Compared to FS-Net,
our SAR-Net(box) outperforms it by a large margin under
5◦5cm metric.

E. Training Data Generation for SAR-Net
We prepare our small training data using models from

ShapeNetCore [2]. ShapeNetCore consists of various
realistic-looking synthetic models which are canonical, in
terms of translation, orientation, and size. To generate the
training set, we pick models as [21], covering 6 categories
- bottle, bowl, camera, can, laptop, and mug. The
instance models are located in the origin of the world coor-
dinate and are surrounded by a camera for generating view-
specific rendered depth images in Blender software [1]. To
be specific, the parameters are as follows. We set the Field
of View (FOV) of the camera as 60◦. To cover varied view-
points, we equally split the camera’s azimuth into 60 re-
gions and randomly sample the azimuth from each region.

Table 7. Results on REAL275 [21]: comparisons with other COPSE methods.(↑): higher better, (↓): lower better.

mAP (↑) Accuracy (↑) Parameters (↓)Dataset Method
IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦5cm (M)

NOCS [21] 78.0 30.1 7.2 10.0 13.8 25.2 18.2 -
CASS [3] 77.7 - - 23.5 - 58.0 - 47.2
SPD [20] 77.3 53.2 19.3 21.4 43.2 54.1 30.4 18.3

FS-Net [4] 92.2 63.5 - 28.2 - 60.8 - 41.2
StablePose [19] - - - - - - 38.8 -
DualPose [13] 79.8 62.2 29.3 35.9 50.0 66.8 50.1 67.9

SAR-Net(small) 80.4 63.7 24.1 34.8 45.3 67.4 49.1 6.3

REAL275

SAR-Net(box) 76.1 55.4 28.0 35.4 48.4 61.9 49.6 6.3
SAR-Net 79.3 62.4 31.6 42.3 50.3 68.3 54.9 6.3

Meanwhile, the camera position randomly ranges from 0.3
to 1.5 meters in the vertical direction and 1.0 to 1.2 meters
in the horizontal direction, relative to the target object. We
also consider the in-plane rotation ranging from −40◦ to
40◦. Finally, we generate rendered depth images under 60
different camera poses for each instance. Given the known
camera intrinsic parameters, the partial point clouds are
then back-projected from depth images and sampled into
1024 points randomly.

F. Effect of Different Template Shape

To learn the shape alignment of the observed point cloud
P , we randomly select three groups of category-level tem-
plate shapes per category, which are sampled into sparse
point cloud Kc. Also, we use mean shapes provided by
the SPD [20] as the template shapes. Notably, we choose
a single fixed template shape for each category before train-
ing the network. During training and inference time, the
category-level template point cloud is assigned according
to the ground-truth and predicted category of the object,
respectively. The network outputs the deformed template
point cloud according to the given category-level template
point cloud. Four groups of template shapes used in our ex-
periments are shown in Fig. 7. As can be seen from Tab. 8,
our models trained by using four different groups of tem-
plate shapes show a slight performance difference among
them. Such comparison results indicate that our proposed
method, which learns the intra-class shape similarity, is ro-
bust to different template shape selections.

Table 8. Results on different template shape configurations. ‘SAR-
Net G1, G2, and G3’ indicate our COPSE models are trained
by using differently configured template shapes. ‘SAR-Net MS’
means using mean shape of each category. (↑): higher better.

mAP (↑) Acc. (↑)Method
IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 5◦5cm

SAR-Net G1 80.4 63.7 24.1 34.8 45.3 67.4 49.1
SAR-Net G2 81.5 62.9 22.8 32.6 44.4 66.6 48.1
SAR-Net G3 81.1 63.9 23.0 32.9 44.9 66.3 47.6
SAR-Net MS 82.0 62.6 23.8 33.0 45.1 67.1 48.9

G. Loss Function for Rotational Symmetry
For the objects with rotational symmetry, they should

have the same appearance around the axis of symmetry.
Nevertheless, the Ldef encounters the ambiguities in deal-
ing with instances with rotational symmetry, e.g., bowl.
Hence, given ground-truth deformed template points K =
{ki}Nk

i=1 with Nk points, we adopt the strategy as [21] to
generate a candidate ground-truth set. Finally, our SAR-
Net reconstructs K̃ = {k̃i}Nk

i=1 supervised by the loss as:

Ldef = min
Sj∈S

{ 1

Nk

Nk∑
i=1

∥∥∥Sj · ki − k̃i

∥∥∥
1
} (1)

where S = {Sj |j = 1, · · · ,M} is a set of candidate sym-
metry transformations. Transformation Sj is applied to the
ground-truth deformed template points K, generating a can-
didate ground-truth set, i.e., rotating ground-truth deformed
template points along its symmetry axis by the angle of
j 360◦

M . Thus, set S covers M discrete global rotational sym-
metries, and M = 12 in our experiment.

H. Rotation Representation Implementation
To compare the performance of different rotation rep-

resentations, we incorporate these representations into our
SAR-Net by replacing the shape alignment component
(SA). Specially, for the SVD 9D [12], we use the released
official code 1. For the continuity 6D [23], we use the
code on the website:2. For Vector [22], we use the imple-
mented code released on the website3 and the loss function
defined in the paper. We firstly transform the representa-
tion of quaternion, SVD 9D, and continuity 6D into corre-
sponding 3 × 3 orthogonal matrixes R̃, and calculate the
geodesic distance between the predicted rotation matrix R̃
and ground-truth one R. The loss function is given as be-
low:

Lrot = arccos(
tr(R̃RT)− 1

2
) (2)

where tr(·) indicates the trace of a square matrix.
1https : / / github . com / google - research / google -

research/tree/master/special_orthogonalization
2https://github.com/zawlin/6d_rot
3https://github.com/DC1991/FS_Net

https://github.com/google-research/google-research/tree/master/special_orthogonalization
https://github.com/google-research/google-research/tree/master/special_orthogonalization
https://github.com/zawlin/6d_rot
https://github.com/DC1991/FS_Net

I. Per-category Performance on NOCS
As in Fig. 2, we show the average precision (AP) curves

per category versus different thresholds on 3D IoU, rotation
error, and translation error on the CAMERA25 (top row)
and REAL275 (bottom row) datasets. The mean average
precision (mAP) curve depicted the mean value of average
precision results for all 6 categories.

Figure 2. Average precision (AP) results versus different thresh-
olds on 3D IoU, rotation error, and translation error on the CAM-
ERA25 (top row) and REAL275 (bottom row) datasets.

J. Per-Instance Performance on LINEMOD
For the evaluation of the LINEMOD dataset, we follow

the testing protocol as [6, 7]. We report the quantitative
results of each instance with other RGB(D) or depth-only
methods, as shown in Tab. 9. Compare to synthetic-only
approach CP(ICP) [7] and CAAE [6], our SAR-Net outper-
forms the CP(ICP) by a margin and achieves comparable
performance with CAAE in terms of some instances like
camera, cat and lamp, etc. Especially, our SAR-Net has
a low performance for the benchwise instance under ADD
metric. That is because the lack of distinctive details from
the real depth makes the back-projected point cloud look
like an object with rotational symmetry, which makes the
network hard to distinguish the orientation of the object.

K. More Qualitative Results
NOCS-REAL275 dataset. To ensure a fair comparison
with the prior work [13], we use the segmented results of
the Mask-RCNN [8] provided by [13], to evaluate the pose
and size accuracy. The qualitative comparison results are
shown in Fig. 9.

Segmentation
90%(180ms)

Misc(back-project, etc.)
2%(4ms)

3D-GCN(inference)
5%(10ms)

SAR-Net(inference)
2%(5ms)

Post-processing
(Umeyama, etc.)

1%(1ms)

Runtime (a single object in a scene) Segmentation

Misc(back-project, etc.)

3D-GCN(inference)

SAR-Net(inference)

Post-processing
(Umeyama, etc.)

20ms

Figure 3. Runtime analysis of our framework.

Additional real-world scenarios. Besides, we also test
our algorithm on 6 different real-world clutter scenarios by
using novel 25 instances selected from the known 4 cate-
gories. Visualized results are shown in Fig. 6.
Intermediate results of our framework. We visualize
the intermediate results from our framework tested on the
REAL275 dataset in Fig. 10, including the estimated 6D
pose & size, back-projected points filtered by 2D segmented
mask, purified points processed by the 3D-GCN, deformed
template point cloud from SA component, symmetric point
cloud from SC component, and coarse object shape. Ad-
ditionally, we visualize the intermediate results from our
framework tested on real-world scenarios in Fig. 11.
Ground-truth symmetric point cloud. Figure 8 shows ex-
emplars of ground-truth symmetric point cloud generated
by chosen symmetric planes. We show the symmetric point
cloud of the different categories under same camera view,
and that of the same instance from different camera views.

L. Runtime Analysis
Given a scene image with a resolution of 640 × 480 and

a single target object, our framework takes 180ms for seg-
mentation, 4ms for processing the depth image, 10ms for
3D-GCN inference, 5ms for SAR-Net inference, and 1ms
for post-processing, as shown in Fig. 3. For a more general
scene with multiple objects, i.e., five instances, the segmen-
tation part takes nearly the same time as the case of a single
object (180ms), and the pose and size estimation part only
takes about 100ms.

M. Comparison to kPAM
kPAM [15] is an excellent algorithm which explicitly de-

tect keypoints on the object as manipulation targets. The
detected keypoints are used to perform tasks with semantic
understanding of objects, e.g., the task of hanging mugs on
a rack by the mug handles. We show the difference between
kPAM and SAR-Net as follows,

(1) Training data. kPAM demands intensive labor for
manually semantic 3D keypoint annotations, but ours only
use synthetic data. kPAM requires annotated 3D keypoints
on the exact semantic position of the object, and ours only

Table 9. Results on LINEMOD [10]: comparisons with other instance-level methods. ‘S’ is synthetic data and ‘R’ is real data.

Training data Methods ape benchwise camera can cat driller duck eggbox glue holepuncher iron lamp phone Mean

RGB(S+R) PVNet [16] 43.6 99.9 86.9 95.5 79.3 96.4 52.6 99.2 95.7 82.0 98.9 99.3 92.4 86.3
RGBD(S+R) FFB6D [9] 98.4 100.0 99.9 99.8 99.9 100.0 98.4 100.0 100.0 99.8 99.9 99.9 99.7 99.7

D(S) CP(ICP) [7] 58.3 65.6 43.0 84.7 84.6 83.3 43.2 99.5 98.8 72.1 70.3 93.2 81.0‘ 75.2
D(S) CAAE [6] 74.5 86.6 65.6 90.2 90.7 97.3 50.0 99.7 93.5 57.9 85.0 82.1 94.4 82.1

D(S) SAR-Net 64.5 4.0 68.3 83.6 91.4 84.0 66.0 99.4 100.0 74.0 70.5 94.5 84.0 75.7

demands the shape alignment of partial input points and
category-level template shape.

(2) Modality. kPAM takes as input RGB-D images for
3D keypoint detection, and our SAR-Net uses the depth im-
age for pose and size recovery.

(3) Applicability of the task. kPAM explicitly detects
keypoints on the object as manipulation targets, and our
SAR-Net deforms the category-level template point cloud
for implicit 3D rotation representation. Thereby, kPAM is
applicable to the task that demands a semantic understand-
ing of objects in a category, while our SAR-Net focuses on
the COPSE task.

N. Failure Cases Analysis
Lack of distinctive geometric details. The synthetic cam-
era category is challenging, as some useful key geometry
in NOCS-CAMERA25 is unavailable, e.g., the geometry of
some cameras represented by simple 3D boxes. Our SAR-
Net only uses depth for geometry (not RGB), and lacked
surface details confuse our network to distinguish front or
back sides of the camera, as the red axis shown in Fig. 4,
resulting in the angular error of 180◦. Thus lacked geome-
try details of cameras result in poor performance in rotation
estimation, as the green curve shown in Fig. 2 (top row).
Imperfect segmentation. Imperfect segmentation results
contains pixels of target object and background, as shown
in Fig. 5. The back-projected points from depth images fil-
tered by such an imperfect mask have outliers from pixels of
background. The outliers will degrade the performance of
the object center and size estimation, i.e., oversize bounding
box and offset of object center localization in Fig. 5, but the
outliers less influence the 3D rotation estimation.
Remark. We discuss the case where inferring the symmet-
ric correspondence does not help much on recovering the
object shape. For example, if the observed point cloud is
almost symmetric about the symmetric plane, e.g., point
cloud of mug’s handle opposite or away from the camera,
the predicted symmetric point cloud should be largely the
same as the observed one. In this case, the concatenated
point cloud is still quite partial. We show this particular
case in our supplemental video, e.g., visualized intermedi-
ate results of the mug category. However, inferring such a
symmetric point cloud is still helpful as it highly depends on
object pose. This could be considered as a prior symmetric
plane constraint that guides the network to learn geometry

SAR-Net

(Ours)

Ground

Truth

Figure 4. Exemplars of failure cases on the CAMERA25 dataset
due to lacked distinctive geometry details of the camera category.
We compare the visualized results of ground-truth (top row) and
our SAR-Net (bottom row).

Imperfect

segmentation

SAR-Net

(w/ 3D-GCN)

SAR-Net

(w/o 3D-GCN)

Figure 5. Failure case on REAL275 due to outliers given by im-
perfect segmentation (yellow mask). The 3D-GCN shows efficacy
in filtering out outliers to enhance the performance of SAR-Net.

details to help differentiate the object’s current pose, boost-
ing pose estimation performance.

O. Robotic Experiment
In the robotic experiment, we use the top grasp for the

grasping task and the side grasp for the object handover and
pouring task. For the top grasp, the robot is programmed to
grasp the handle of different mugs, sides of the bowls, and
top of the bottles, according to the estimated 6D object pose
and size. For the side grasp in the object handover task, we
use the predicted pose and size to compute the gripper pose
parallel to the narrower dimension of the bottle. For the side
grasp in pouring task, the robot is commanded to grasp the
mug body and then move it to the top of the moving bowl,
according to the estimated pose of the bowl. We use the
MoveIt! [5] to plan the feasible trajectory to grasp objects.

References
[1] Blender software. https://www.blender.org/. 2
[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 2

[3] Dengsheng Chen, Jun Li, Zheng Wang, and Kai Xu. Learn-
ing canonical shape space for category-level 6d object pose
and size estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11973–11982, 2020. 3

[4] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, Linlin
Shen, and Ales Leonardis. Fs-net: Fast shape-based network
for category-level 6d object pose estimation with decoupled
rotation mechanism. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1581–1590, 2021. 3

[5] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros
topics]. IEEE Robotics & Automation Magazine, 19(1):18–
19, 2012. 5

[6] Ge Gao, Mikko Lauri, Xiaolin Hu, Jianwei Zhang, and Si-
mone Frintrop. Cloudaae: Learning 6d object pose regres-
sion with on-line data synthesis on point clouds. In ICRA,
2021. 4, 5

[7] Ge Gao, Mikko Lauri, Yulong Wang, Xiaolin Hu, Jianwei
Zhang, and Simone Frintrop. 6d object pose regression via
supervised learning on point clouds. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 3643–3649. IEEE, 2020. 4, 5

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 4

[9] Yisheng He, Wei Sun, Haibin Huang, Jianran Liu, Haoqiang
Fan, and Jian Sun. Pvn3d: A deep point-wise 3d keypoints
voting network for 6dof pose estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11632–11641, 2020. 5

[10] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian
conference on computer vision, pages 548–562. Springer,
2012. 5

[11] Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le.
Pf-net: Point fractal network for 3d point cloud completion.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7662–7670, 2020. 1

[12] Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely,
Angjoo Kanazawa, Afshin Rostamizadeh, and Ameesh
Makadia. An analysis of svd for deep rotation estimation.
arXiv preprint arXiv:2006.14616, 2020. 3

[13] Jiehong Lin, Zewei Wei, Zhihao Li, Songcen Xu, Kui Jia,
and Yuanqing Li. Dualposenet: Category-level 6d object
pose and size estimation using dual pose network with re-
fined learning of pose consistency. In Proceedings of the

IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3560–3569, October 2021. 3, 4, 9

[14] Zhi-Hao Lin, Sheng-Yu Huang, and Yu-Chiang Frank Wang.
Convolution in the cloud: Learning deformable kernels in 3d
graph convolution networks for point cloud analysis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1800–1809, 2020. 2

[15] Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake.
kpam: Keypoint affordances for category-level robotic ma-
nipulation. arXiv preprint arXiv:1903.06684, 2019. 4

[16] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. Pvnet: Pixel-wise voting network for 6dof pose esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4561–4570, 2019. 5

[17] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1

[18] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 2

[19] Yifei Shi, Junwen Huang, Xin Xu, Yifan Zhang, and Kai
Xu. Stablepose: Learning 6d object poses from geometri-
cally stable patches. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15222–15231, 2021. 3

[20] Meng Tian, Marcelo H Ang Jr, and Gim Hee Lee. Shape
prior deformation for categorical 6d object pose and size es-
timation. arXiv preprint arXiv:2007.08454, 2020. 3

[21] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized object co-
ordinate space for category-level 6d object pose and size esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2642–2651, 2019. 2,
3

[22] Jiaze Wang, Kai Chen, and Qi Dou. Category-level 6d object
pose estimation via cascaded relation and recurrent recon-
struction networks. In 2021 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2021. 3

[23] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and
Hao Li. On the continuity of rotation representations in neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5745–
5753, 2019. 3

https://www.blender.org/

Figure 6. More exemplar results from the real-world clutter environment. The colored coordinate axes indicate the predicted rotation of
the object described in the camera frame, where the x, y, and z axes are colored as red, green, and blue, individually. We also visualize the
predicted 6D object pose and size, represented by the tight-oriented bounding boxes.

G
ro

u
p
 1

G
ro

u
p
 2

G
ro

u
p
 3

muglaptopcancamerabowlbottle

G
r
o
u

p
 1

G
r
o
u

p
 3

G
r
o
u

p
 2

M
e
a
n

sh
a
p

e

Figure 7. Four groups of category-level template point cloud (grey points) are used in our experiments, sampled into sparse point cloud
(milky white points) by FPS algorithm. From left to right, we show in each row: bottle, bowl, camera, can, laptop, mug.

S
a

m
e
 i

n
st

a
n

c
e

D
if

fe
r
e
n

t
v

ie
w

s

D
if

fe
r
e
n

t
in

st
a

n
c
e

S
a

m
e

v
ie

w
s

Symmetric point cloud Observed point cloud Axis of symmetry Symmetric plane

Figure 8. More exemplars of ground-truth symmetric point cloud generated by chosen symmetric planes. We show symmetric point clouds
of different categories under the same camera view (top row) and that of the same instance from different camera views (bottom row).

scene_2_0553_pred_GT.png

D
u

a
lP

o
se

S
A

R
-N

et
 (

O
u

rs
)

G
ro

u
n

d
-t

ru
th

D
u

a
lP

o
se

S
A

R
-N

et
 (

O
u

rs
)

G
ro

u
n

d
-t

ru
th

Figure 9. More qualitative comparisons between our SAR-Net and DualPose [13]. We visualize the ground-truth results with the green
bounding boxes, our predicted results with the blue bounding boxes, and the competitor’s with the yellow ones.

1_0000_mug_SA.jpg

Deformed template

point cloud

Symmetric point

cloud

observed point cloud

(3D-GCN)

point cloud

(Mask-RCNN)
Coarse shape

Estimated 6D

pose and size

Figure 10. More visualized intermediate results from our framework. From left to right, we show in each row: the estimated 6D object
pose & size, the back-projected point cloud filtered by 2D segmented mask, purified points processed by the 3D-GCN, deformed template
point cloud, symmetric point cloud, and coarse object shape.

Depth Observed point cloud Symmetric point cloud

Deformed template

point cloud
Coarse shape Estimated pose & size

Category-level

template point cloud

Figure 11. Visualized intermediate results from our framework tested on real-world scenario.

