
Supplementary Material for “SWEM: Towards Real-Time Video Object
Segmentation with Sequential Weighted Expectation-Maximization”

Zhihui Lin1∗, Tianyu Yang2, Maomao Li2, Ziyu Wang3, Chun Yuan4†, Wenhao Jiang3, and Wei Liu3

1Department of Computer Science and Technologies, Tsinghua University, Beijing, China
2Tencent AI Lab, Shenzhen, China 3Tencent Data Platform, Shenzhen, China

4Tsinghua Shenzhen International Graduate School, Peng Cheng Lab, Shenzhen, China
{lin-zh14@mails, yuanc@sz}.tsinghua.edu.cn tianyu-yang@outlook.com

{limaomao07, cswhjiang}@gmail.com wangziyukobe@163.com wl2223@columbia.edu

1. Overview

We provide the supplementary results for our main pa-
per, which are organized as follows. Section 2 introduces
more training details not mentioned in the original paper. In
Section 3, we provide more ablation analysis on the num-
ber of permutation-invariant features L (i.e., Eq.(12) in the
main paper) and the temperature hyperparameter τ in the
similarity calculation (i.e. Eq. 2 in this supplementary ma-
terial ). In Section 4, we provide the comparison between
the proposed SWEM and STCN [1] on both efficiency and
performance with a commonly used GPU, NVIDIA GTX
1080ti. We also report SWEM performance on YouTube-
VOS 2019 validation set in Section 5. In Section 6, we an-
alyze the effect of training with different datasets. Finally,
we provide qualitative results in Section 7.

2. More Training Details

We set channel dimension as C = 128 for the Key and
C ′ = 512 for the Value feature, which are the same as
those in STM [9]. We first train SWEM on image datasets
for 500k iterations, including COCO [7], MSRA10K [2],
ECSSD [13], PASCOL-S [6] and PASCOL-VOC2012 [5],
and then on video datasets for 200k iterations, including
DAVIS [11], and the YouTube-VOS [14]. When using a sin-
gle NVIDIA V100 GPU, the image training process takes
about 2 days while the video training process needs about
1 day. Following STM and STCN [1], we sample video
clips using an 11-times (3471 v.s 300) higher probability for
YouTube-VOS than DAVIS 2017 training set. Our SWEM
takes about 8GB GPU memory with batch size 4, which re-
veals its memory-efficient during training and testing.

*Work done during an internship at Tencent AI Lab
†Corresponding Author

Algorithm 1: Calculation of Permutation-Invariant
Affinity Features

Input: Kfg:K ×HW , Kbg:K ×HW
Output: S:L×HW

1 function GetPermutInvariantFeatures(Kfg , Kbg):
// Get top-L affinities for each
pixel.

2 K̃fg/bg=torch.topk(Kfg/bg , k=L, dim=1)
3 // Initialize Sfg and Sbg as

zeros.

4 Sfg/bg=torch.zeros like(K̃fg/bg)
5 S

fg/bg
0 =K̃fg/bg

0

6 for l in range(1, L):
7 S

fg/bg
l =Sfg/bg

l−1 +K̃fg/bg
l

8 S=Sfg/(Sfg+Sbg)
9 return S

3. More ablation analysis
The number of permutation-invariant features L. Recall
that we introduced a permutation-invariant operation to take
advantage of affinities between pixels in the current frame
and memory features in Section 4.3 of the main paper. The
calculation of affinity features is detailed as Eq.(12) in the
main paper, which is repeated as:

S
(t)
nl =

∑
j∈topl(Kfg,(t)

n )
Kfg,(t)

nj∑
j∈topl(Kfg,(t)

n )
Kfg,(t)

nj +
∑

j∈topl(Kbg,(t)
n )

Kbg,(t)
nj

,

(1)
where l = 1, 2, ..., L, L ≤ K, and K is the number of
foreground or background base features.

Define Kfg and Kbg are affinity matrices between frame
features and foreground-background base features. Then
the permutation-invariant features with L channels can be



L FPS DAVIS 2016 val DAVIS 2017 val
J & F ↑ JM ↑ J & F ↑ JM ↑

8 40.8 88.5 87.5 81.0 78.6
16 39.1 89.5 88.6 81.4 78.8
32 37.5 89.6 88.8 81.5 78.8
64 36.4 89.5 88.6 81.9 79.3
128 33.0 89.6 88.6 81.6 79.0

Table 1. Ablation study on the number of permutation-invariant
features L.

calculated with Algorithm 1 in PyTorch [10] style. L is a
hyperparameter to control the number of segmentation clues
channels and the computation complexity. Table 1 shows
the results when setting L as 8, 16, 32, 64 and 128 sepa-
rately. The segmentation performance is robust to various
L except L = 8, which brings a significant performance re-
duction. When increasing L from 64 to 128, the inference
speed is dropped by 3.4 FPS while the performance is not
improved.
The temperature hyperparameter τ . The similarity in
this work is calculated by:

K(a,b) = exp(
ab⊤/τ

∥a∥ · ∥b∥
), (2)

where the temperature hyperparameter τ controls the range
of similarity measures. Table 2 reports the segmentation
performance on the DAIVS 2016 and DAVIS 2017 valida-
tion sets with different τ . The segmentation performance
is sensitive to τ . Too large or too small τ are both not ap-
propriate, especially the large one. The overall J&F on
the DAVIS 2017 validation set is dropped from 81.9 to 66.7
when changing τ from 0.05 to 1. As contrast, τ = 0.1 and
τ = 0.05 0.05 is able to achieve satisfying results.

4. Efficiency comparison with STCN
STCN [1] achieves state-of-the-art performance while

maintaining an acceptable inference speed (26 FPS with

τ
DAVIS 2016 val DAVIS 2017 val
J & F ↑ JM ↑ J & F ↑ JM ↑

0.01 88.5 87.6 79.6 77.1
0.02 89.4 88.5 80.5 78.1
0.05 89.5 88.6 81.9 79.3
0.1 89.5 88.5 81.7 79.0
0.2 87.5 87.2 72.8 69.9
1 82.1 82.6 66.7 63.9

Table 2. Ablation study on the temperature hyperparameter τ .

Ours SWEM
STCN (T=5)

STCN (T=10)

STCN (T=15)

11610

6218

4444

512

1620
STCN (T=+∞)

STCN (T=30)
2687

Figure 1. The comparison between STCN and proposed SWEM
on per-frame inference time and number of stored features in a
single-object segmentation scenario. SWEM has a fixed size of
memory features and stable inference time. Methods are evaluated
with an NVIDIA GTX 1080ti GPU.

an NVIDIA V100 GPU). However, Similar to STM [9],
STCN still stores template features every T frames end-
lessly. We compare the efficiency between STCN and pro-
posed SWEM with an NVIDIA GTX 1080ti GPU, which is
a cheap and commonly used platform.

Figure 1 shows the per-frame inference time and mem-
ory capacity of STCN and SWEM in a single-object seg-
mentation scenario. It clearly reflects the negative effects of
growing memory features on the efficiency and storage dur-
ing the long-term segmentation. Compared to STCN, our

Ours SWEM
STCN (T=5)

STCN (T=10)

STCN (T=15)

11610

6218

4444

512

1620
STCN (T=+∞)

STCN (T=30)
2687

Figure 2. The comparison between STCN and proposed SWEM
on inference speed and performance in a multi-object segmenta-
tion scenario. We set different memory interval (T=5, 10, 15, 30,
+∞) for STCN. The area of the circle represents the number of
per-frame memory features involved in matching for each object.
SWEM achieves a better trade-off between performance and effi-
ciency than STCN.



[width=10em]Training DataMethod DAVIS 2016 val J & F DAVIS 2017 val J & F
STM [9] STCN [1] Ours SWEM STM [9] STCN [1] Ours SWEM

DAVIS 74.5 84.6 88.1 48.6 71.2 77.2
DAVIS + YTVOS 88.2 89.8 89.5 80.0 81.1 81.9

Image + (DAVIS + YTVOS) 89.8 91.2 91.3 81.6 84.5 84.3

Table 3. Analysis of training on different datasets. We train STM [9], STCN [1] and proposed SWEM under three different conditions:
1) only training on video data DAVIS, 2) training on video datasets DAVIS and YouTube-VOS, and 3) pretraining on image data first and
then training on DAVIS and YouTube-VOS.

SWEM stores far fewer memory features and has a stable
inference time cost.

Figure 2 shows the efficiency and performance compari-
son between STCN and SWEM in a multi-object segmenta-
tion scenario. The area of the circle represents the number
of per-frame per-object memory features. We also set dif-
ferent memory interval (T=5, 10, 15, 30, +∞) for STCN.
When T = 10, STCN gets a similar inference speed and
performance with SWEM, but with much more memory
features. When T = 15, the performance has a signifi-
cant drop. If STCN only stores features of the first frame
(T = +∞), the overall performance is dropped from 85.4
to 74.1.

The above results demonstrate the superiority of SWEM
in terms of efficiency and performance with common hard-
ware.

5. Comparisons on YouTube-VOS 2019

To further evaluate the effectiveness of our method,
we also carry out experiments on the YouTube-VOS 2019

Method G seen unseen
JM ↑ FM ↑ JM ↑ FM ↑

STM [9] 79.2 79.6 83.6 73.0 80.6
CFBI [16] 81.0 80.6 85.1 75.2 83.0
LWL [4] 81.0 79.6 83.8 76.4 84.2

SSTVOS [3] 81.8 80.9 85.3 76.6 84.4
HMMN [12] 82.5 81.7 86.1 77.3 85.0
JOINT [8] 82.8 80.8 84.8 79.0 86.6
AOT [15] 83.6 82.2 86.9 78.3 86.9

SWEM* 82.6 82.0 86.1 77.2 85.2

Table 4. Comparison with state-of-the-art methods on the
YouTube-VOS 2019 validation dataset. We report all of the mean
Jaccard (J ), the boundary (F) scores for seen and unseen cate-
gories, and the overall scores G. Besides, we use ‘*’ to indicate
those methods with an inference speed > 20 FPS. Note SSTVOS,
JOINT and AOT are transformer-based methods.

dataset. Note that the YouTube-VOS 2019 validation
set contains 507 videos, while the 2018 version has 474
videos. Specifically, our SWEM is trained on the YouTube-
VOS 2019 training set and evaluated on the validation set
through the official evaluation server. We compare SWEM
with recent state-of-the-art methods in Table 4, including
transformer-based methods SSTVOS [3], JOINT [8] and
AOT [15]. SWEM achieves the 82.6% overall score while
maintaining the real-time inference speed.

6. Impact of Training Data

Table 3 presents the performance of various models on
DAVIS 2016 and DAVIS 2017 validation sets with different
training datasets. It can be seen that both pre-training on im-
age data and using additional YouTube-VOS video data can
boost performance. Note that our SWEM trained only on
DAVIS data outperforms STM [9] and STCN [1] under the
same setting with a large margin. Furthermore, STM [9] ob-
tains 48.6% J&F on DAVIS 2017 validation set when it is
trained only with DAVIS data. Authors claim it is due to the
high risk of over-fitting on small datasets. However, STCN
gets a much higher overall performance 71.2% J&F than
STM. We argue the reason for this performance gap is that
the features involved in matching in STM come from dif-
ferent feature spaces, whereas those features in STCN and
SWEM are from the same feature spaces. Moreover, the
direct usage of affinity features also accelerates the con-
vergence of SWEM. SWEM gets similar performance with
STCN when adopting additional YouTube-VOS video data
or image data. It is worth noting that SWEM stores fixed-
size (512) memory features which are much fewer than
those in STCN. As an inference, a single frame with a size
480× 864 produces 1,620 features.

7. Qualitative Results

We further provide the qualitative comparison between
STM [9] and our SWEM on the validation set of the DAVIS
2017 and YouTube-VOS in Figure 3, which demonstrates
the superiority of our SWEM.



0% 100%
S

T
M

M
E

M
N

et
M

E
M

N
et

S
T

M
M

E
M

N
et

S
T

M

D
A

V
IS

S
T

M
M

E
M

N
et

M
E

M
N

et
S

T
M

M
E

M
N

et
S

T
M

Y
o
u

T
u

b
e-

V
O

S

0% 100%

Figure 3. The qualitative comparison between STM [9] and our SWEM on the DAVIS 2017 and YouTube-VOS. The obvious failure
segmentation is indicated by yellow bounding boxes. Our SWEM is robust with rapid motion and similar distractors.



References
[1] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethink-

ing space-time networks with improved memory coverage
for efficient video object segmentation. In NeurIPS, 2021. 1,
2, 3

[2] Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip
H. S. Torr, and Shi-Min Hu. Global contrast based salient
region detection. IEEE TPAMI, 37(3):569–582, 2015. 1

[3] Brendan Duke, Abdalla Ahmed, Christian Wolf, Parham
Aarabi, and Graham W Taylor. Sstvos: Sparse spatiotem-
poral transformers for video object segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5912–5921, 2021. 3

[4] Bhat G. et al. Learning what to learn for video object seg-
mentation. In European Conference on Computer Vision
(ECCV), 2020. 3

[5] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. 1

[6] Yin Li, Xiaodi Hou, Christof Koch, James M Rehg, and
Alan L Yuille. The secrets of salient object segmentation.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 280–287, 2014. 1

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[8] Yunyao Mao, Ning Wang, Wengang Zhou, and Houqiang
Li. Joint inductive and transductive learning for video ob-
ject segmentation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 9670–9679,
2021. 3

[9] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo
Kim. Video object segmentation using space-time memory
networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019. 1, 2,
3, 4

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32:8026–
8037, 2019. 2

[11] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017. 1

[12] Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seong-
won Lee, Suhyeon Lee, and Euntai Kim. Hierarchical mem-
ory matching network for video object segmentation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 12889–12898, 2021. 3

[13] Jianping Shi, Qiong Yan, Li Xu, and Jiaya Jia. Hierar-
chical image saliency detection on extended cssd. IEEE

transactions on pattern analysis and machine intelligence,
38(4):717–729, 2015. 1

[14] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang,
Dingcheng Yue, Yuchen Liang, Brian Price, Scott Cohen,
and Thomas Huang. Youtube-vos: Sequence-to-sequence
video object segmentation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 585–601,
2018. 1

[15] Zongxin Yang, Yunchao Wei, and Yi Yang. Associating ob-
jects with transformers for video object segmentation. In
NeurIPS, 2021. 3

[16] Yang Y. Yang Z., Wei Y. Collaborative video object segmen-
tation by foreground-background integration. In European
Conference on Computer Vision (ECCV), 2020. 3


	. Overview
	. More Training Details
	. More ablation analysis
	. Efficiency comparison with STCN
	. Comparisons on YouTube-VOS 2019
	. Impact of Training Data
	. Qualitative Results

