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1. Supplemental Derivations
1.1. Deriving the Number of Sines

Lemma 1.1.1. The product of two sines is the sum of two sines with frequencies corresponding to the sum and difference of
the initial frequencies.

sin(ω1x+ φ1) · sin(ω2x+ φ2) =
1

2

[
sin
(
(ω1 + ω2) · x+ φ1 + φ2 − π/2

)
+ sin

(
(ω1 − ω2) · x+ φ1 − φ2 + π/2

)]
(1)

Proof. Without loss of generality, let sin(a) = sin(ω1x+ φ1) and sin(b) = sin(ω2x+ φ2). Then,

sin(a) · sin(b) = eja − e−ja
2j

· e
jb − e−jb

2j
(2)

=
ej(a+b) + e−j(a+b) − ej(a−b) − e−j(a−b)

−4 (3)

= −1

2

e−jπ/2

−j
ej(a+b) + e−j(a+b)

2
+

1

2

ejπ/2

j

ej(a−b) + e−j(a−b)

2
(4)

=
1

2

ej(a+b−π/2) + e−j(a+b−π/2)−jπ

2j
+

1

2

ej(a−b+π/2) + e−j(a−b+π/2)+jπ

2j
(5)

=
1

2

ej(a+b−π/2) − e−j(a+b−π/2)
2j

+
1

2

ej(a−b+π/2) − e−j(a−b+π/2)
2j

(6)

=
1

2

[
sin(a+ b− π/2) + sin(a− b+ π/2)

]
(7)

(8)

Theorem 1.1.1. The number of sines represented by a multiplicative filter network is given as

N
(NL)
sine =

NL−1∑
i=0

2idi+1
h ,

where NL is the number of layers and dh is the number of hidden features in the network.

Proof. Consider a NL = 1 layer network, given as

z0 = sin(ω0x + φ0) (9)

This expression is a vector of sines, and the proof follows trivially for NL = 1; the number of sines represented by this
network is exactly dh because we have x ∈ Rdin and ω0 ∈ Rdh×din .

To build intuition, we also analyze the case of NL = 2, which gives

z1 = sin(ω1x + φ1) ◦ [W1 sin(ω0x + φ0) + b1] (10)
= sin(ω1x + φ1) ◦ [W1 sin(ω0x + φ0)] + sin(ω1x + φ1) ◦ b1 (11)

(12)

where

sin(ω1x + φ1) ◦ [W1 sin(ω0x + φ0)] (13)

=


sin(ω

(1)
1 x + φ

(1)
1 )

...
sin(ω

(dh)
1 x + φ

(dh)
1 )

 ◦

W

(1,1)
1 sin(ω

(1)
0 x + φ

(1)
0 ) + · · ·+W

(1,dh)
1 sin(ω

(dh)
0 x + φ

(dh)
0 )

...
W

(dh,1)
1 sin(ω

(1)
0 x + φ

(1)
0 ) + · · ·+W

(dh,dh)
1 sin(ω

(dh)
0 x + φ

(dh)
0 ).

 (14)
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Given that the Hadamard product between each row in the above expression results in a doubling of the number of sines
(Lemma 1.1.1), the entire Hadamard product results in a vector containing 2d2h sines. The remaining term sin(ω1x+φ1)◦b1

contributes an additional dh sines, for a total 2d2h + dh sines in the NL = 2 layer network. In general, the linear component
Wi of each layer multiplies the total number of sines by dh and the Hadamard product with the sine doubles this by a factor
of 2. An additional dh sines are contributed by the bias term.

Now, assume we have a network with NL = k layers. Let Li(z) = Wiz + bi and let gi(x) = sin(ωix + φi). Then we
have

zk−1 = gk−1(x) ◦ (Lk−1(gk−2(x) ◦ (. . . (

dh+2dh(2d
2
h +dh)︷ ︸︸ ︷

g2(x) ◦ (
dh(2d

2
h +dh)︷ ︸︸ ︷

L2(g1(x) ◦ (L1 g0(x)︸ ︷︷ ︸
dh︸ ︷︷ ︸

d2h

)

︸ ︷︷ ︸
2d2h +dh

))) . . .)))), (15)

where the brackets indicate the number of sines for successive terms, revealing the following recursion for the number of
sines in each layer.

N
(1)
sine = dh (16)

N
(i+1)
sine = dh + 2dhN

(i)
sine (17)

To complete a proof by induction let us assume that the theorem holds for NL = k, and we have

N
(k+1)
sine = dh + 2dhN

(k)
sine (18)

= dh + 2dh

k−1∑
i=0

2idi+1
h (19)

= dh +

k−1∑
i=0

2i+1di+2
h let j = i+ 1. (20)

= dh +

k∑
j=1

2jdj+1
h (21)

=

k∑
j=0

2jdj+1
h (22)

which is the original result, completing the proof.

Corollary 1.1.1. If we remove the bias layers from each Li, then we remove the additional of dh from the recursion and it
becomes

Ñ
(1)
sine = dh (23)

Ñ
(i+1)
sine = 2dhN

(i)
sine, (24)

such that

Ñ
(NL)
sine = 2NL−1dNL

h . (25)

1.2. Deriving the Distribution of Frequencies

Lemma 1.2.1. Let Xi, i = 1, 2, . . . be a sequence of independent, identically distributed random variables. Then, let N be a
discrete random variable that is independent of Xi and takes on values N > 0. Now, define the compound random variable

SN =

N−1∑
i=0

Xi, (26)
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Figure 1. Empirical evaluation of distribution of frequencies. We plot the distribution of frequencies at the output of each layer in a 5-layer
network with hidden features dh = 1024 bandwidth Bi equal to 10 (averaged over 1000 network realizations). The output of the first layer
is uniformly distributed and successive layers increasingly approximate the normal distribution according to the Central Limit Theorem. A
normal distribution with variance calculated using Theorem 1.2.1 is plotted in red and closely matches the observed distribution.

The variance of SN is given by

Var(SN ) = E[N ]Var(X1) + Var(N)E[X1]
2 (27)

Proof. The proof follows from the law of total variance (see, e.g., p. 286 of Chatfield and Theobald [5]).

Lemma 1.2.2. Central Limit Theorem. Let X1, . . . , Xn be a sequence of independent and identically distributed random

variables with finite mean and variance, µ and σ2, respectively, and let Sn =
n∑
i=1

Xi. For large n, Sn approximates the

normal distribution with E[sn] = nµ and Var(sn) = nσ2

Proof. See Ash et al. [2].

Theorem 1.2.1. The frequencies of BACON are approximately Gaussian distributed with variance equal to
NL−1∑
m=0

m · 2
NL−1−mdNL−m

h
NL−1∑
i=0

2idi+1
h

 · Var(ω(ji)
i ). (28)

where Var(ω(ji)
i ) is the variance of the initialized frequencies in each input sine layer gi.

Proof. The overall idea is that, if the number of sines is in the network is given as
NL−1∑
i=0

2idi+1
h (Theorem 1.1.1), then it turns

out that the ith element in this sum describes the number of sines whose frequency is the sum of i + 1 random variables.
Then, we can use Lemma 1.2.1 and Lemma 1.2.2 to derive the variance and distribution of the network frequencies.

First, let us show that the frequency of each sine represented by the network is itself a sum of random variables. We write
an expression for the number of sines in the network Fi(ω) at frequency ω directly after applying the Hadamard product
with gi(x). Let δ(ω) represent the Dirac delta function. Expanding on our previous results, we have that

F0(ω) =

∞∫
−∞

dh−1∑
j=0

δ(ω − ω(j)
0 )︸ ︷︷ ︸

f0(ω)

dω. (29)

This expression simply places a delta function at the location of each frequency and the integral checks to see how many
frequencies exist at the input parameter frequency, ω.

Now, recall the previous result that adding the next layer multiplies the number of frequencies by 2dh and adds an
additional dh frequencies. We use the convolution operator ∗ to shift the frequencies of the previous layer according to
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Lemma 1.1.1. The additional dh frequencies result from the Hadamard product of the sine layer and the bias term from the
previous layer. Thus we can give the following expression for the frequencies at layer i+ 1.

Fi+1(ω) =

∞∫
−∞

fi(ω) ∗
dh−1∑
j=0

[
δ(ω − ω(j)

i+1) + δ(ω + ω
(j)
i+1)

]
︸ ︷︷ ︸

shifts spectrum according to Lemma 1.1.1

+

dh−1∑
j=0

δ(ω − ω(j)
i+1)︸ ︷︷ ︸

new frequencies from the bias term

dω. (30)

If we ignore frequencies resulting from the bias terms in the above expression, we would have that there are 2NL−1dNL
h

sines in an NL layer network (Theorem 1.1.1) with output frequencies given as

ω̄ = ω
(j0)
0 + s1ω

(j1)
1 + · · ·+ sNL−1ω

(jNL−1)

NL−1 (31)

for some s0, . . . , sNL−1 ∈ {−1, 1} and indices j0, . . . , jNL−1 ∈ {0, 1, . . . , dh − 1}. Including the bias term at the ith layer
(for i > 0) simply results in an additional 2NL−1−idNL−i

h sines in the network, whose frequencies are a sum of NL − i terms
(corresponding exactly to the terms of the sum in Theorem 1.1.1). Thus, frequencies represented by the network are drawn
from a compound distribution (as in Lemma 1.2.1) since they can be the sum of from 1 to NL random variables.

Now we can describe the distribution of the frequencies of the network. Let the variance of an element of ωi be given by
Var(ω(ji)

i ). Then, the output frequency ω̄ is a compound random variable such that

ω̄ = ω
(jM )
M +

NL−1∑
i=M+1

siω
(ji)
i M ∈ {0, . . . , NL − 1} (32)

and M is a random variable whose probability depends on the total number of frequencies in the network that contribute to
each possible value of M . Specifically, using Theorem 1.1.1 to evaluate the fraction of sines for each value of M gives

pM (m) =
2NL−1−mdNL−m

h
NL−1∑
i=0

2idi+1
h

. (33)

We can calculate the resulting variance using the law of total variance outlined in Lemma 1.2.1.

Var(ω̄) = E[M ]Var(ω(ji)
i ) + Var(M)E[ω

(ji)
i ]2 (34)

= E[M ]Var(ω(ji)
i ) ω

(ji)
i zero mean (35)

=

NL−1∑
m=0

m · pM (m)Var(ω(ji)
i ) (36)

=


NL−1∑
m=0

m · 2
NL−1−mdNL−m

h
NL−1∑
i=0

2idi+1
h

 · Var(ω(ji)
i ) (37)

Finally, we note that ω̄ becomes the sum of a large number of random variables as the number of hidden layers in the net-
work increases, and so we can approximate the distribution as a Gaussian using the Central Limit Theorem (Lemma 1.2.2).
We show that this holds empirically in Fig. 1, where we show the simulated distribution of frequencies in each layer of a
5-layer network with dh = 1024 and Bi = 10, averaged over 1000 realizations. The distribution of frequencies is well-
approximated by a Gaussian with the derived variance (especially for increasing layers).
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1.3. Initialization and Distribution of Activations

1.3.1 Preliminary Derivations

Lemma 1.3.1. Let X and Y be two independent random variables with probability density functions fX and fY . Then the
probability density function fZ(z) of Z = XY is given as

fZ(z) =

∫ ∞
−∞

fX(x)fY (z/x)
1

|x|dx. (38)

Proof. See Grimmett and Stirzaker [8].

Theorem 1.3.1. Let W, X, and P be independent random variables sampled from continuous uniform distributions as

W ∼ U(−B,B) (39)
X ∼ U(−0.5, 0.5) (40)
P ∼ U(−π, π) (41)

where B � π. Then let Z =WX + P . The probability density function fZ(z) of Z is approximately

fZ(z) ≈


1

B
log

(
B

|2z|

)
, −B/2 ≤ z ≤ B/2

0, else
. (42)

Proof. Let Z̃ =WX . Then, fZ̃(z) is given as (Lemma 1.3.1):

fZ̃(z) =

∫ ∞
−∞

fW (w)fX(z/w)
1

|w| dw (43)

= 2

∫ ∞
0

fW (w)fX(z/w)
1

w
dw (44)

=
1

B

∫ B

0

fX(z/w)
1

w
dw (45)

fX(z/w) =

{
1 −0.5 ≤ z/w ≤ 0.5

0 else
(46)

=

{
1 w ≤ −2z, w ≥ 2z

0 else
(47)

=
1

B

∫ B

min(2z,B)

1

w
dw (48)

=
1

B
log(|w|)

∣∣∣B
min(2z,B)

(49)

=
1

B
log

(
B

min(|2z|, B)

)
(50)

=


1

B
log

(
B

|2z|

)
, −B/2 ≤ z ≤ B/2

0, else
(51)

Now, Z =WX+P = Z̃+P and fZ = fZ̃ ∗fP , where ∗ indicates convolution. ForB � π, the support of fP is sufficiently
small that we can neglect the “broadening” effect of the convolution, such that fZ ≈ fZ̃ .
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Theorem 1.3.2. With Z and B as defined in Theorem 1.3.1, we have that

Var[sin(Z)] ≈ 1

2

[
1− SI(B)

B

]
≈ 1

2
(52)

Proof.

Var[sin(Z)] = E[sin2(Z)] (53)

=
1

2
(1− E[cos(2Z)]) (54)

E[cos(2Z)] =
∫ ∞
−∞

fZ(z) cos(2z) dz (55)

≈ 1

B

∫ B/2

−B/2
log

(
B

|2z|

)
cos(2z) dz (Theorem 1.3.1) (56)

Integrate by parts:
∫
f dg = fg −

∫
dfg (57)

f = log

(
B

|2z|

)
, dg = cos(2z) dz, df = −1

z
dz, g =

1

2
sin(2z) (58)

=
1

B

12 log

(
B

|2z|

)
sin(2z) +

∫
sin(2z)

2z
dz︸ ︷︷ ︸

1
2 SI(2z)


B/2

−B/2

(59)

=
1

2B

[
log

(
B

|2z|

)
sin(2z) + SI(2z)

]B/2
−B/2

(60)

=
1

2B

[
log

(
B

|2z|

)
sin(2z) + SI(2z)

]B/2
−B/2

(61)

=
SI(B)

B
≈ π

2B
, B � 0 (62)

⇒ 1

2
(1− E[cos(2Z)]) =

1

2

(
1− SI(B)

B

)
(63)

≈ 1

2

(
1− π

2B

)
, B � 0 (64)

≈ 1

2
(65)

Where we used that SI(x) is the sine integral function: SI(x) =
∫ x
0

sin(t)
t dt.

Lemma 1.3.2. The variance of the product of two random variables X and Y is given by

Var[X · Y ] = Var[X] · Var[Y ] + E[Y ]2 · Var[X] + E[X]2 · Var[Y ] (66)

Proof. Refer to Goodman [7].

1.3.2 Proof of the Initialization Scheme

Theorem 1.3.3. Let the input to BACON be uniformly distributed in [−0.5, 0.5] and the frequency ωi of each layer be
uniformly distributed in [−Bi, Bi] with Bi � 0. Then, let the linear layer weights Wi applied after the sine layers be
distributed according to a random uniform distribution in the interval [−

√
6/dh,

√
6/dh]. The activations after each linear

layer are standard normal distributed.
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Figure 2. Empirical evaluation of initialization scheme. We show the default MFN initialization scheme (left) [6], and the proposed
initialization scheme (right) for a network with 9 sine layers and 1024 hidden features (dh). For our method we set the bandwidth Bi of
each layer to an arbitrary value of 30π. We use the default settings of the MFN codebase, which initializes the linear layers Wi uniformly
in [−

√
256/dh,

√
256/dh] and sets the bandwidth to Bi = 256

√
din. Note that the proposed initialization scheme resolves the issue of

the activation magnitude becoming extremely small with increased network depth. We also show that the distribution of activations closely
matches our derivations, with the analytical expressions plotted in red.

Proof. A sketch of the proof is as follows.

• The variance of the output of each sine layer gi(x) is approximately 0.5 (Theorem 1.3.2).

• The output after applying the first linear layer W1g0(x) is standard normal distributed (neglecting the effect of the bias).
We have that the ith output is

∑dh−1

j=0 W
(i,j)
1 g0(x)

(j), with Var
(
W

(i,j)
1 g0(x)

(j)
)
= Var

(
W

(i,j)
1

)
· Var

(
g0(x)

(j)
)
=

1
12

(
2
√
6/dh

)2
· 12 = 1/dh (Lemma 1.3.2). Then the entire sum has variance dh · 1/dh = 1, and is normal distributed

by the Central Limit Theorem (Lemma 1.2.2).

• The output of the Hadamard product g1(x)◦(W1g0(x)+b1) has variance Var(g1(x)) ·Var(W1g0(x)+b1) ≈ 1
2 ·1 = 1

2
(Lemma 1.3.2).

• The distribution after applying the next linear layer Wi+1 is again standard normal (using the same steps of taking the
product of the variances and applying the Central Limit Theorem), and the same steps as above can be repeated to show
the distributions are standard normal after each linear layer.

1.3.3 Empirical Evaluation

We empirically evaluate the initialization scheme and derivations by showing plots of the distributions of activations for
BACON with 9 sine layers, 1024 hidden features (dh), and an arbitrary bandwidth Bi = 30π. The plot is shown in Fig. 2, and
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we overlay the analytical expression for the distribution at each intermediate output of the network. We also compare to the
conventional MFN initialization proposed by Fathony et al. [6] using the publicly available implementation1. Their proposed
method initializes the linear layers Wi to a random uniform value in [−

√
256/dh,

√
256/dh] and sets the bandwidth to

Bi = 256
√
din. We find that this causes the magnitude of the activations to decrease significantly with increasing network

size, leading to vanishing gradients. There are five different distributions that can be observed at intermediate outputs of the
network with our proposed initialization scheme:

1. The input to the network is uniformly distributed in [-0.5, 0.5].

2. The output of the linear layers applied directly to the input (that is, ωix+φi) is distributed as derived in Theorem 1.3.1.

3. We find empirically that the output of gi(x) = sin(ωix + φi) is approximately arcsine distributed and the variance
is approximately 1/2 as derived in Theorem 1.3.2. In Fig. 2, we show the empirical distribution together with a plot
of the arcsine distribution with support over [−1, 1] given by the probability density function fX(x) = 1

π
√
1−x2

. Note
the close correspondence of the arcsine distribution and the observed histogram of activations in Fig. 2. We believe
the connection to the arcsine distribution is related to previous work, which shows that the sine of uniform and normal
random variables are both approximately arcsine distributed [12].

4. The output of W1g0(x) + b1 is standard normal distribution as described in Theorem 1.3.3. Also, the outputs of other
linear layers Wi with bias bi are standard normal distributed.

5. The output of the Hadamard product gi(x) ◦ (Wizi−1 + bi) is the product of an (approximately) arcsine distribution
and a standard normal distribution. The distribution of a product of random variables is described by Lemma 1.3.1, and
the variance of this distribution is approximately equal to 1/2 (Lemma 1.3.2). We numerically calculate the probability
density function for the product of a standard normal and arcsine distribution according to Lemma 1.3.1 and find that
this approximates the empirical distribution as shown in Fig. 2.

1https://github.com/boschresearch/multiplicative-filter-networks
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2. Supplemental Results
2.1. Images

We evaluate BACON on an image fitting task and compare its performance to three other methods: a ReLU network using
Gaussian Fourier Features positional encoding (PE) [14] and SIREN [12], both supervised at 256×256 (1×) resolution, and
a ReLU network using integrated PE (adapted from Mip-NeRF) [3] with supervision at 1/4, 1/2, and 1× resolutions. BACON
is supervised at a single scale (1×) and learns a multiscale decomposition. All networks contain 4 hidden layers with 256
hidden features and are trained as described in the main text.

We perform a quantitative evaluation of the image fitting performance by training on a dataset of 16 randomly selected
images from the DIV2K dataset and reporting the peak signal to noise ratio (PSNR) and structural similarity index measure
(SSIM). We resize center crops of the images to 256×256 resolution and then fit a model to the grid of pixels for each image.
We evaluate the performance on this training set of pixels as well as an offset validation grid of 256×256 pixels whose
values are bilinearly interpolated. Quantitative results in Table 1 demonstrate that all methods fit the training set to well over
30 dB PSNR at at 256×256 (1×) resolution. All methods perform similarly on the validation set. Remarkably, BACON
demonstrates similar performance to the single-scale representations while simultaneously representing all output scales.

Additional quantitative image results are shown in Table 2, evaluated across multiple scales. Here, we train the network in
the same fashion as above, but evaluate on a 1/4 (64 × 64) or 1/2 (128 × 128) resolution coordinate grid or a 4× upsampled
grid (1024 × 1024). We compare the network outputs to a bilinearly downsampled image or a high-resolution ground truth
image in the case of 4× upsampling. BACON and integrated positional encoding show the best performance for the low-
resolution images while all methods perform similarly for upsampling.

Fig. 3 shows all output resolutions (1/4, 1/2, 1, and 4×) for the result shown in the main text. Fig. 4 shows additional results
on center-cropped images from the DIV2K dataset [1]. In all results, Fourier Features and SIREN fit to a single scale and
show aliasing when subsampled, i.e. at 1/4 and 1/2 resolution. Integrated PE learns reasonable anti-aliasing as it is explicitly
supervised on anti-aliased pixel values. The band-limited nature of BACON allows it to closely represent a low-pass filtered
image while only explicitly supervising at 1× resolution. At 4× resolution, all methods except BACON show high-frequency
artifacts.

Fig. 5 shows an experiment where we compare BACON and the network with a normal and low-pass filtered version of
integrated position encoding at the 4× upsampled resolution. The integrated positional encoding result contains spurious
high-frequency details and artifacts from aliasing since the bandwidth of the network is not constrained. Since aliasing
corrupts the low-frequency components, these artifacts cannot be removed by applying a low-pass filter.

Deep BACON. We compare deep 8- and 16-layer versions of BACON with the proposed initialization scheme and MFNs
with the original initialization scheme. For the image fitting task, we find that an 8-layer BACON fits the lighthouse image
shown in the main paper to 38.8 dB PSNR versus 29.8 dB PSNR for an 8-layer MFN. For 16 layers, BACON fits the image to
37.4 dB while the MFN architecture fails to optimize due to numerical instabilities. We show convergence plots of the PSNR
in Fig. 6.

Scale Interpolation. Interpolating between the discrete output scales allows a kind of continuous output scale to be
achieved, similar to the trilinear filtering used to render from mimaps [15]. To illustrate this effect, we sample BACON
at all output scales on the same 256×256 resolution grid, and then linearly interpolate between resulting images. Results are
shown in Fig. 7. Note that since linear interpolation is used, there is a discontinuous appearance of high-frequency Fourier
coefficients when moving from one scale to the next. Still, this simple technique allows blending between scales.
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Training Validation
# Params. PSNR SSIM PSNR SSIM

Fourier Features 264K 37.362 ± 2.544 0.976 ± 0.009 29.771 ± 1.410 0.931 ± 0.022
SIREN 265K 41.851 ± 2.084 0.987 ± 0.006 28.927 ± 1.756 0.922 ± 0.034
Integrated PE 274K 33.092 ± 2.219 0.930 ± 0.027 29.505 ± 1.498 0.901 ± 0.025
BACON 268K 38.871 ± 1.727 0.979 ± 0.005 29.266 ± 1.632 0.922 ± 0.023

Table 1. Quantitative evaluation (mean± standard deviation) for image fitting. For BACON and Integrated Positional Encoding we compare
to the highest resolution output.

Scale Method # Params. PSNR SSIM

1/4

Fourier Features 264K 24.484 ± 1.636 0.858 ± 0.055
SIREN 265K 24.063 ± 1.832 0.843 ± 0.069
Integrated PE 274K 36.819 ± 1.697 0.984 ± 0.007
BACON 67K 31.179 ± 1.890 0.948 ± 0.011

1/2

Fourier Features 264K 30.830 ± 1.462 0.955 ± 0.017
SIREN 265K 29.474 ± 2.024 0.942 ± 0.033
Integrated PE 274K 33.020 ± 1.596 0.959 ± 0.013
BACON 199K 33.140 ± 1.711 0.959 ± 0.009

4×
Fourier Features 264K 25.909 ± 3.161 0.722 ± 0.122
SIREN 265K 26.198 ± 3.255 0.740 ± 0.115
Integrated PE 274K 24.530 ± 2.477 0.667 ± 0.127
BACON 268K 25.967 ± 2.869 0.731 ± 0.108

Table 2. Quantitative evaluation (mean ± standard deviation) for image fitting, evaluated at multiple scales.
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Figure 3. Image fitting results. We train a ReLU network using Fourier features (FF) positional encoding (PE) [14] and a SIREN [12] to
fit an image at 256×256 (1×) resolution, and evaluate the models at 64×64 (1/4), 128×128 (1/2), 256×256 (1×), and 1024×1024 (4×)
resolution. Since these methods fit to a single scale, we see aliasing at lower resolutions, and high-frequency artifacts at 4× resolution
(see insets). We train a ReLU network with integrated PE [3] with supervision at 1/4, 1/2, and 1× resolutions. While this network learns
anti-aliasing at low resolutions, inference at the unsupervised 4× resolution yields artifacts. Finally, BACON is supervised at a single
scale, learning band-limited outputs that closely match low-pass filtered reference images (see left column, and Fourier spectra insets). All
methods achieve an accurate fit at 1× resolution with PSNRs of 37.838 dB (FF PE), 41.513 dB (SIREN), 34.105 dB (Integrated PE), and
40.314 dB (BACON).
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Figure 4. Supplemental image fitting results. We show the output of baseline methods and BACON fit to a subset of images from the
DIV2K dataset. Similar to previous results, we observe aliasing in baseline methods when subsampling to lower resolutions, and artifacts
in 4× supersampled outputs. BACON produces anti-aliased outputs at low-resolution and interpretable upsampled results via band-limited
interpolation.
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Figure 5. Applying low-pass filter to output of integrated positional encoding (IPE) network. Since IPE networks are not band limited,
there are artifacts in the output when upsampling at 4× resolution (middle column). BACON (left column) is band limited and does not
exhibit these artifacts. Spurious high frequency oscillations in the IPE network are aliased onto low-frequency components after sampling
the network and cannot be removed by a low-pass filter (right column).
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Figure 6. Comparison of deep versions of the original MFN and BACON for image fitting. Both the 8- and 16-layer BACON models fit the
lighthouse image to well over 30 dB PSNR while the 8-layer MFN does not reach 30 dB PSNR. We were unable to train a 16-layer MFN
with the original initialization scheme due to numerical instabilities during optimization.
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Figure 7. Illustration of interpolation between output scales, similar to the trilinear interpolation used to render from mipmaps. The yellow
bordered images in the top row are the outputs of BACON at 1/4, 1/2 and 1× resolution, and the other images are linear interpolations.
Zoomed insets are shown in the middle row, and the bottom row shows the Fourier spectrum of each image.
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2.2. Neural Radiance Fields

We provide additional implementation details and results on reconstructing neural radiance fields using NeRF [10], Mip-
NeRF [3], and BACON.

2.2.1 Additional Implementation Details

For training neural radiance fields, we use BACON with 8 hidden layers and 256 hidden features. We set the bandwidth of
each layer using random uniform initialization with ωi ∼ U(−Bi, Bi). For a maximum bandwidth B, we set B0 = B1 =

B2 = B/24, B3 = B4 = B/16, B5 = B6 = 1/8, and B7 = B8 = 1/4 such that
∑8
i=0Bi = B.

For training BACON we also adopt the regularization strategy of Hedman et al. [9] to penalize non-zero off-surface opacity
values, σ. We include this term to mitigate non-zero opacity at unsupervised locations can produce hazy spots in the rendered
images using BACON. The regularization penalty is given as

Lreg = λσ
∑
i,j,k

log
(
1 + 2σk(ri, t

f
j )
)
, (67)

where λσ is a weight that we decay from logarithmically from 1e-3 to 1e-6 during training.
To evaluate the effect of the regularization, we train BACON, Mip-NeRF, and NeRF using the same regularizer and report

the PSNR in Table 3. All methods are trained on the lego scene for 300K iterations with and without regularization. NeRF
and Mip-NeRF have few opacity artifacts, and so do not benefit from regularization. BACON shows a significant benefit from
regularization.

Additionally, we find that we can obtain a roughly 30% speedup for training and inference without noticeable drop in
performance by re-using outputs gi throughout the network. For example, for layers where Bi = Bi+1, we set gi = gi+1,
allowing us to reuse computation and reducing the number of input layers that need to be computed by roughly half.

scale NeRF (no reg/reg) Mip-NeRF (no reg/reg) BACON (no reg/reg)

1× 27.695/27.679 32.655/32.436 24.377/29.658
1/2 30.577/30.565 33.952/33.863 24.611/29.501
1/4 31.305/31.311 34.058/34.008 25.105/29.468
1/8 27.067/27.059 33.805/33.762 25.854/28.958

Table 3. Evaluation of the effect of opacity regularization for NeRF, Mip-NeRF, and BACON.

2.2.2 Supplemental Results

We provide inference times of NeRF, Mip-NeRF and BACON in Table 4 evaluated on an NVIDIA RTX A6000 GPU. While
our implementation is generally slower than the NeRF and Mip-NeRF implementations, we attribute some of this difference to
the underlying frameworks; we use PyTorch [11], while NeRF and Mip-NeRF are implemented in JAX [4]. Additionally, the
BACON architecture has somewhat greater computational complexity than the comparable NeRF and Mip-NeRF architectures
due to the additional sine input layers and Hadamard products. Still, for low-resolution outputs BACON has a computational
advantage because only the first few layers need to be evaluated.

In Tables 5 and 6 we provide the per-scene average PSNR and SSIM for each method. We observe the same trends as in
the main paper, with Mip-NeRF achieving the best performance, while BACON outperforms NeRF at the lowest and highest
resolution outputs and uses a fraction of the parameters to render the low-resolution outputs compared to either baseline. An
additional comparison is shown in Table 7 for small versions of the NeRF and Mip-NeRF models trained on the lego scene.
The number of layers is reduced so that the parameter count is roughly equivalent to the lowest resolution output of BACON.
The output PSNR for each method degrades by roughly 1–2 dB at each scale compared to the full-resolution models.

Supplemental qualitative results are shown in Fig. 8, where we show output images for each scene at each scale. Finally,
we show additional results for learning neural radiance fields in a semi-supervised case in Fig. 9. Here, outputs of BACON
at each scale are supervised on full resolution images, and BACON automatically learns the multiscale decomposition of the
neural radiance field used for rendering.
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Inference Times (s)
1× 1/2 1/4 1/8

NeRF 4.4 1.1 0.28 0.073
Mip-NeRF 4.5 1.1 0.28 0.073
BACON 10.2 2.1 0.39 0.065

Table 4. Inference times for NeRF, Mip-NeRF, and BACON.

PSNR
# Params. chair drums ficus hotdog lego materials mic ship Avg.

NeRF 1/8 28.767 24.025 25.188 29.685 26.539 24.758 26.720 26.028 26.464
NeRF 1/4 33.064 25.492 26.161 33.478 30.782 26.618 30.615 28.163 29.297
NeRF 1/2 511K 32.882 24.503 25.387 33.711 31.037 25.850 30.517 27.640 28.941
NeRF 1× 29.565 22.741 24.280 31.408 28.228 24.319 27.827 25.508 26.734
NeRF Avg. 31.070 24.190 25.254 32.071 29.147 25.386 28.920 26.834 27.859

Mip-NeRF 1/8 37.174 28.200 28.177 37.332 33.924 30.414 35.803 31.631 32.832
Mip-NeRF 1/4 36.700 26.979 26.951 37.131 34.266 29.233 34.977 30.503 32.093
Mip-NeRF 1/2 511K 35.724 25.560 26.685 36.622 34.295 27.972 34.219 29.379 31.307
Mip-NeRF 1× 33.374 24.005 26.428 34.984 33.136 26.764 32.494 27.808 29.874
Mip-NeRF Avg. 35.743 26.186 27.060 36.517 33.905 28.596 34.373 29.830 31.526

BACON 1/8 133K 31.764 25.967 27.184 31.670 29.161 25.899 28.609 27.549 28.475
BACON 1/4 266K 32.523 26.094 25.562 32.175 29.768 25.268 29.524 27.244 28.520
BACON 1/2 398K 31.958 25.074 24.319 32.342 29.890 24.948 29.444 26.552 28.066
BACON 1× 531K 30.729 24.175 23.753 31.942 30.418 24.300 28.454 25.668 27.430
BACON Avg. 329K 31.744 25.327 25.204 32.032 29.809 25.104 29.008 26.753 28.123

Table 5. PSNR for each method averaged over each scene of the multiscale Blender dataset.
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SSIM
# Params. chair drums ficus hotdog lego materials mic ship Avg.

NeRF 1/8 0.941 0.902 0.918 0.957 0.930 0.944 0.963 0.876 0.929
NeRF 1/4 0.976 0.926 0.947 0.973 0.968 0.943 0.980 0.888 0.950
NeRF 1/2 511K 0.972 0.909 0.942 0.968 0.961 0.922 0.971 0.865 0.939
NeRF 1× 0.935 0.879 0.925 0.951 0.922 0.895 0.947 0.820 0.909
NeRF Avg. 0.956 0.904 0.933 0.962 0.945 0.926 0.965 0.862 0.932

Mip-NeRF 1/8 0.990 0.952 0.951 0.986 0.984 0.978 0.994 0.928 0.970
Mip-NeRF 1/4 0.989 0.942 0.954 0.983 0.984 0.964 0.990 0.909 0.964
Mip-NeRF 1/2 511K 0.986 0.929 0.960 0.980 0.982 0.949 0.985 0.890 0.957
Mip-NeRF 1× 0.975 0.915 0.957 0.973 0.972 0.932 0.980 0.861 0.946
Mip-NeRF Avg. 0.985 0.935 0.955 0.981 0.980 0.955 0.987 0.897 0.959

BACON 1/8 133K 0.962 0.919 0.933 0.967 0.954 0.945 0.970 0.882 0.942
BACON 1/4 266K 0.972 0.931 0.930 0.966 0.948 0.922 0.975 0.877 0.940
BACON 1/2 398K 0.968 0.923 0.927 0.965 0.949 0.913 0.968 0.854 0.934
BACON 1× 531K 0.957 0.917 0.926 0.959 0.951 0.901 0.958 0.827 0.924
BACON Avg. 329K 0.965 0.923 0.929 0.964 0.951 0.921 0.968 0.860 0.935

Table 6. SSIM for each method averaged over each scene of the multiscale Blender dataset.

PSNR SSIM
# Params. 1× 1/2 1/4 1/8 1× 1/2 1/4 1/8

NeRF 157K 27.144 30.050 31.554 27.309 0.903 0.949 0.971 0.940
Mip-NeRF 157K 30.136 32.067 32.901 32.798 0.939 0.965 0.977 0.980
BACON 133K N/A N/A N/A 29.161 N/A N/A N/A 0.954

Table 7. Comparison between small models trained on the lego dataset with roughly equal numbers of parameters as the lowest resolution
output of BACON. Reducing the parameter count of NeRF and Mip-NeRF results in a roughly 1–2 dB loss at each scale output.
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Figure 8. Neural radiance field results. Outputs of NeRF [10], Mip-NeRF [3], and BACON are shown, where all outputs are supervised
using each scale of the multiscale Blender dataset.
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Ground Truth BACON 1/4BACON 1/2BACON 1x BACON 1/8

Figure 9. Results of training BACON with all outputs supervised at high resolution. BACON learns a multiscale decomposition for each
scene. Fourier spectra of the learned opacity volume are shown as insets.
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2.3. 3D Shape Representation

2.3.1 Additional Implementation Details

We evaluate BACON on 3D shape representation with SDFs and compare its performance to three other methods: Fourier
Features [14], SIREN [12], and Neural Geometric Level of Detail (NGLOD) [13]. All networks are trained to directly fit a
signed distance function estimated from a ground-truth mesh. For BACON, Fourier Features, and SIREN we use 8 hidden
layers with 256 hidden features. We scale the shape models so that they fit within a volume whose dimensions extend from
-0.5 to 0.5. The maximum bandwidth of BACON is set to 256 cycles per unit interval for the Lucy and Thai Statue scenes, and
to 192 cycle per unit interval for the Armadillo, Dragon, and Sphere models. We scale the bandwidth of each layer the same
as with the neural radiance field models as described in the main text. We determine the maximum bandwidth empirically
such that the network achieves a good fit to high frequency details in the model with noticeable smoothing in the lower levels
of detail.

After training, the models are extracted at 5123 resolution using marching cubes, and we evaluate performance using
Chamfer distance and intersection over union (IOU). Chamfer distance is calculated by sampling 300,000 points on the
surface of the ground truth and predicted models and then finding the distance to the closest point on the other surface. That
is, for the two point clouds P1, and P2 we compute

DChamfer(P1, P2) =
1

|P1|
∑
x∈P1

min
y∈P2

‖x− y‖22 +
1

|P2|
∑
x∈P2

min
y∈P1

‖x− y‖22. (68)

For the IOU score, we compute intersection and union of the occupancy values for the ground truth and predicted meshes on
a 1283 grid of points centered on the object.

2.3.2 Supplemental Results

We include shape fitting results for four scenes from the Stanford 3D Scanning Repository (Armadillo, Dragon, Lucy, Thai
Statue) and a simple sphere in Figures 10, 11, 12, 13, and 14. All methods perform similarly at the highest level of detail (see
Table 8). For lower levels of detail, BACON (1/8, 1/4, 1/2) represents a smooth multiscale decomposition of the shape, while
the representations for NGLOD (NGLOD-1,2,3) show angular artifacts due to their high-frequency spectra (see figure insets).
Note that results for NGLOD are shown for training the representation on a maximum of 4 levels of detail (i.e., the number of
trained levels of their feature octree) and then rendering out the resulting trained levels of detail 1–4.

Table 8 includes quantitative evaluation of each method for the Armadillo, Dragon, Lucy, Thai Statue scenes, and a simple
sphere baseline (with radius 0.25). The highest detail outputs of all methods perform comparably, including BACON, which
achieves similar performance despite simultaneously representing multiple levels of detail. NGLOD generally improves at
higher levels of detail at the cost of significantly more model parameters. Here, NGLOD 1–4 represent outputs from the model
trained at maximum level of detail 4, and we also train separate models with maximum levels of detail 5–6 (NGLOD-5 and
NGLOD-6).

Additionally, Table 9 includes evaluation of shape fitting at lower levels of detail for BACON and NGLOD (trained with a
maximum level of detail 4). Note that here NGLOD has fewer parameters than BACON for lower levels of detail; this is not
true for the full resolution models, as number of parameters scales superlinearly for NGLOD and linearly for BACON.

Parameters Sphere Dragon Armadillo Lucy Thai Statue
Chamfer↓ IOU↑ Chamfer↓ IOU↑ Chamfer↓ IOU↑ Chamfer↓ IOU↑ Chamfer↓ IOU↑

Fourier Features 527K 8.364e-7 1.000e+0 1.861e-6 9.828e-1 3.230e-6 9.897e-1 2.956e-6 9.654e-1 1.946e-6 9.823e-1
SIREN 528K 8.407e-7 1.000e+0 2.762e-6 9.621e-1 3.895e-6 9.858e-1 3.706e-6 9.625e-1 2.695e-6 9.651e-1
NGLOD-4 1.35M 9.722e-7 9.990e-1 2.272e-6 9.722e-1 3.410e-6 9.891e-1 5.479e-6 9.421e-1 2.320e-6 9.689e-1
NGLOD-5 10.1M 9.443e-7 9.993e-1 2.211e-6 9.841e-1 3.804e-6 9.835e-1 3.206e-6 9.621e-1 2.047e-6 9.767e-1
NGLOD-6 78.8M 1.064e-6 9.966e-1 1.918e-6 9.840e-1 3.212e-6 9.911e-1 3.013e-6 9.634e-1 1.939e-6 9.824e-1
BACON 1× 531K 8.353e-7 1.000e+0 1.875e-6 9.831e-1 3.233e-6 9.893e-1 3.075e-6 9.650e-1 1.972e-6 9.791e-1

Table 8. Quantitative evaluation of 3D shape fitting for high-detail outputs. All methods show comparable performance. Neural Geometric
Level of Detail (NGLOD) [13] is shown for levels of detail 4, 5, and 6 and performance generally increases (as does the model parameter
count) with increasing levels of detail. BACON gives comparable performance at the highest resolution scale to other methods despite
simultaneously representing multiple levels of detail.
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Parameters Sphere Dragon Armadillo Lucy Thai Statue
Chamfer↓ IOU↑ Chamfer↓ IOU↑ Chamfer↓ IOU↑ Chamfer↓ IOU↑ Chamfer↓ IOU↑

NGLOD-1 8.74K 9.391e-7 9.987e-1 6.624e-6 9.381e-1 6.435e-6 9.699e-1 1.965e-5 8.936e-1 8.139e-6 9.392e-1
NGLOD-2 36.8K 9.549e-7 9.989e-1 3.247e-6 9.612e-1 4.033e-6 9.839e-1 7.550e-6 9.288e-1 3.474e-6 9.638e-1
NGLOD-3 199K 1.100e-6 9.975e-1 2.274e-6 9.722e-1 3.407e-6 9.891e-1 5.513e-6 9.421e-1 2.325e-6 9.689e-1
BACON 1/8 133K 8.349e-7 1.000e+0 3.430e-6 9.624e-1 3.997e-6 9.844e-1 5.309e-6 9.461e-1 3.168e-6 9.622e-1
BACON 1/4 266K 8.320e-7 1.000e+0 2.223e-6 9.773e-1 3.355e-6 9.892e-1 3.467e-6 9.627e-1 2.119e-6 9.748e-1
BACON 1/2 398K 8.343e-7 1.000e+0 1.955e-6 9.815e-1 3.242e-6 9.897e-1 3.174e-6 9.652e-1 1.985e-6 9.799e-1

Table 9. Quantitative evaluation of 3D shape fitting for BACON and Neural Geometric Level of Detail (NGLOD) [13] for low levels of
detail. Here, NGLOD has fewer parameters than BACON, and BACON generally achieves better performance.
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Figure 10. Qualitative results on the Dragon scene. Rendered objects and normal maps are shown, and Fourier spectra of the SDF values
are included as insets.
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Figure 11. Qualitative results on the Armadillo scene. Rendered objects and normal maps are shown, and Fourier spectra of the SDF values
are included as insets.
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Figure 12. Qualitative results on the Lucy scene. Rendered objects and normal maps are shown, and Fourier spectra of the SDF values are
included as insets.
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Figure 13. Qualitative results on the Thai Statue scene. Rendered objects and normal maps are shown, and Fourier spectra of the SDF
values are included as insets.
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Figure 14. Qualitative results on the Sphere scene. Rendered objects and normal maps are shown, and Fourier spectra of the SDF values
are included as insets.
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2.4. Accelerated Marching Cubes

In this section, we explain two strategies for accelerating mesh extraction via the Marching Cubes algorithm with signed
distance function (SDF) representation networks.

2.4.1 Adaptive-Frequency SDF Evaluation

We observe that the band-limited, multi-scale nature of our network allows efficient allocation of computational resources
when evaluating SDFs. The key idea is to adaptively choose whether to use SDFs from low-frequency or high-frequency
output layers (Fig. 15). For each cell, we compute the low-frequency output SDFlow that takes a fraction of time of the
full network evaluation. Then, for cells that are far away from the zero-level-set (i.e., magnitude of SDFlow larger than
some threshold τ ), we adopt early-stopping and do not proceed to the higher network layers, as we do not need highly-
accurate SDFs for empty cells. For cells near the surface (i.e., |SDFlow| < τ ), we need accurate SDFs, and thus we use the
full network for high-frequency outputs. This adaptive early-stopping strategy meaningfully reduces the computation time
for mesh extraction (Table 10) and is unique to BACON that produces multi-scale intermediate outputs, unlike the existing
architectures such as SIREN that needs to go through the entire network for all cases. We set τ to be 0.7 times the finest
voxel length.

2.4.2 Multi-scale SDF Evaluation

We introduce another strategy to accelerate Marching Cubes mesh extraction using octree-style, multi-scale SDF grids. As
shown in Fig. 16, we evaluate the shape SDFs in a hierarchical way, from the low to high resolution grids. We note that the
SDFs evaluated at a coarse level can be used to decide whether or not to subdivide a cell. That is, assuming the modeled
SDFs are accurate, when the magnitude of SDF at the center of a voxel is larger than the radius of the circumsphere, the voxel
is empty (i.e., containing no zero-level-set), so we do not need to further evaluate the SDFs at higher resolutions. Similarly,
when the SDF magnitude at the center is smaller than the threshold R, the voxel contains zero-crossing, so it needs to be
evaluated at higher resolution via subdivision. Empirically, we set R to be 2 times the circumsphere radius, to provide a
margin of safety to the SDF modeling errors. This multi-scale Marching Cubes approach is not unique to BACON and can be
applied to other SDF-modeling networks such as SIREN. As shown in Table 10, the strategy reduces the computation time
by a factor of ≈40.

2.4.3 Combining the Two Strategies

While the above two strategies individually provide significant speedup for mesh extraction, we can combine them together
to further enhance the performance. That is, we adopt the adaptive-frequency approach for each level in the multi-scale
evaluation. For coarse levels, we adopt the early-stopping strategy to all cells. For the finest resolution level, which takes
account for most of the computations, we similarly adopt early-stopping for voxels that are far away from the zero-crossings
using the threshold τ . As a result, the combination of the two strategies provide another meaningful reduction of computation
time against the pure multi-scale scheme, as shown in Table 10. Note our accelerated Marching Cubes does not decrease the
quality of the extracted meshes (see, output shapes in Fig. 17).

2.4.4 Discussion of Occupancy Networks

We notice that Occupancy Networks similarly proposed a multi-resolution mesh extraction strategy on the occupancy fields.
The octree-style evaluation for occupancy fields could lead to errors, however, because occupancy fields to not provide
the same empty-space guarantees that SDFs provide. Furthermore, the adaptive-frequency evaluation cannot be used for
Occupancy Networks, and thus all query points need to be evaluated by the full network layers.
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(a) Adaptive-Frequency Outputs

abs(SDF_low) > ! Output: SDF_high

Output: SDF_low

Bacon Layers

False

True

(b) Adaptive-Frequecy Decision Process

Figure 15. Adaptive-frequency SDF evaluations. When evaluating SDFs on a dense grid (a) for mesh extraction, we leverage the band-
limited nature of BACON layers to adaptively allocate the computation resources (b) across the cells. For each cell we first compute the
SDF with a low-frequency output layer (SDFlow). For cells with the magnitude of SDFlow larger than some threshold τ (i.e., the red cells
that are far from the zero-level-set), we do not proceed to the higher layers of BACON, as we do not need high-frequency details in the
empty-space. For cells near the surface (i.e., when |SDFlow| < τ ), we compute the full-frequency SDF (SDFhigh) using the highest layer
output (the blue cells). This adaptive-frequency SDF evaluation saves significant amount of time on computing the SDFs in empty-space
via early-stopping, which cannot be adopted by existing network architectures, e.g., SIREN, that need to go through the entire network
layers for all evaluations.

|SDF| < R

R

|SDF| > R

Figure 16. Multi-Scale Marching Cubes. We propose a hierarchical octree-style SDF evaluation scheme for efficiently pruning empty
spaces using the nature of SDFs. We start from the coarsest resolution grid (left) and query the SDFs for all cells. Assuming the modeled
SDFs are correct, we can identify some of the cells to be empty (i.e, no zero-crossing exists within the cell), when the magnitude of SDFs
at the center is larger than the the radius of the circumsphere (dotted circles in the diagram). In practice, to provide a margin of safety for
the model errors, we use 2 × R for the criteria for checking empty cells. Then, only for the non-empty cells (green), we subdivide them
into 8 cells and evaluate higher resolution SDFs in the next level grid, which we repeat multiple times. For all our experiments we used 4
levels of scales. Note that the proposed multi-scale SDF evaluation is not unique to BACON and can be applied to existing networks, e.g.,
SIREN, that model SDFs.
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Seconds
Armadillo Dragon Lucy Sphere Thai

SIREN Original 16.75 16.78 16.76 16.78 16.76
SIREN Multi-Scale 0.404 0.258 0.253 0.252 0.354
BACON Original 17.93 17.836 17.909 17.926 17.938
BACON Adaptive 5.925 5.325 5.278 5.391 5.584
BACON Multi-Scale 0.411 0.273 0.270 0.265 0.364
BACON Adapt. + Multi. (Proposed) 0.280 0.207 0.188 0.172 0.267

Table 10. Marching Cubes timing analysis. From top to bottom: dense vanilla Marching Cubes using SIREN; multi-scale Marching Cubes
using SIREN; dense vanilla Marching Cubes using BACON; adaptive mesh extraction using BACON; multi-scale Marching Cubes using
BACON; the proposed combination of multi-scale and adaptive SDF evaluation using BACON.

GT BACON

BACONGT
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GT BACON

Figure 17. Extracted 3D shapes using the proposed adaptive-frequency multiscale inference procedure.
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Figure 18. Comparison of asymptotic computational complexity.

2.5. Comparison to Explicit Fourier Basis

Interestingly, we find that a BACON representing a grid of 5123 discrete frequencies (used in our shape fitting experiments)
is more efficient to evaluate for few samples than using the Inverse Fast Fourier Transform (IFFT) or naive computation of
the inverse discrete Fourier transform (IDFT) on an explicit grid of 5123 coefficients. The computational complexity of
the IFFT and IDFT are O(N log(N)) and O(N2), where here, N = 5123. BACON is a compressive representation of the
spectrum, and its complexity scales as O(d2h) (due to matrix multiplication). In Fig. 18 we plot a comparison of asymptotic
computational complexity for n output samples for each of these methods. Since the IFFT always computes 5123 outputs, its
cost is constant.
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