
Coupled Iterative Refinement for 6D Multi-Object Pose Estimation

Supplemental Material

1 Additional inputs to the GRU

The correlation features and hidden state input to the GRU are described in the main paper. The additional
inputs to the GRU are described in this section.

Context features Following the procedure described in RAFT [9], we use a Resnet[3]-based feature extractor to
construct context features and an initial hidden state for every image (Fig. 1b). The hidden state is updated with
every GRU iteration, while the context features remain unchanged.

Depth features For each image pair (i, 0), we have inverse-depth maps z−1
i and z−1

0 . We use xi→0 to index z−1
0 ,

producing a new inverse-depth map z−1
i→0. The depth residuals (z−1

0 −z−1
i→0) implied by the induced correspondences

xi→0 are provided as input to the GRU before each update. This gives the GRU more information on how well
depth has been aligned. Since xi→0 are real numbers, we use bilinear interpolation. This procedure is identical for
correspondences from image 0 to i.

Solver Residuals The solver residuals from the previous solver iteration are fed to the GRU. These residuals are

calculated by taking the difference between the current induced correspondences x
(t)
i→0 and the previous revised

correspondences x
′(t−1)
i→0 . This allows our model to detect outliers easily as the pixels with unusually high residuals,

and thus prune them in the next update.

2 RGB-Only Optimization

In the RGB-D setting, depth for the input image is given and stays fixed for each pixel regardless of the current
pose estimate. In the RGB-Only setting, depth is obtained by rendering the object at the current pose estimate
G0. See Fig. 1a.

xRGBD
0 =

x0

y0
d0

 xRGB
0 =

 x0

y0
R(G0)

 (1)

In our objective function, G0 maps the points between images. In the RGB setting, it also produces the depth for
points xRGB

0 in the input image.

RGBD : E(G0) =

N∑
i=1

∣∣|x′
i→0 −Π(G0G

−1
i Π−1(xi))|

∣∣2
Σi→0

+

N∑
i=1

∣∣|x′
0→i −Π(GiG

−1
0 Π−1(xRGBD

0))|
∣∣2
Σ0→i

(2)

RGB : E(G0) =

N∑
i=1

∣∣|x′
i→0 −Π(G0G

−1
i Π−1(xi))|

∣∣2
Σi→0

+

N∑
i=1

∣∣|x′
0→i −Π(GiG

−1
0 Π−1(xRGB

0))|
∣∣2
Σ0→i

(3)

In the RGB setting, the depth of xRGB
0 is a function of the pose G0 in Eq. 3. However, it is difficult to treat it as

such in the optimization since our differentiable solver requires calculating the derivative of the Jacobian for the
rendering function R. Instead, we treat the depth in the image as a variable to be optimized over jointly with the
pose G0. The resulting optimized pose and depth may be inconsistent with one another since they were treated
as separate variables in the optimization. Therefore, we discard the depth update produced by the solver and
produce a new depth map by rendering the updated pose. This ensures that the depth is a function of the pose.

1

GRU
Lookup

BD-PnP

Correlation
Features

Hidden
State

Pose

(a) RGB Pose Update Module

Hidden State

Input Features

ResNet
(b) Context features and hidden state initialization

3 Implementation Details:

Training Schedule: Our method is implemented in Pytorch [8]. All models are initialized from scratch with
random weights and trained for 100K steps. During training, we use the AdamW [7] optimizer. Final models
are trained with a batch size of 12 on two RTX-3090tis. Ablation experiments are trained with a batch size of 4.
We use an exponential learning rate schedule with a linear increase to 3× 10−4 over 10000 steps and a 50% drop
every subsequent 20000 steps. We do not use any weight decay. We use the full resolution images for training:
640×480 for YCB-V, 720×540 for T-LESS, and 640×480 for LM-O. In the inner update loop, the correspondence
field, confidence weights, depth, hidden state, etc. are maintained at 80 × 60 spatial resolution, which is 1

4 of
the resolution of the 320 × 240 input crop. We downsample the input depth by subsampling and use strided
convolutions for the image features.

Image augmentation: We use the same image augmentation as [6] on all three datasets, specifically contrast,
hue, sharpness, gaussian blur, and brightness. The depth images in the training data are sparse, so we fill in the
gaps using bilinear interpolation.

4 Accuracy Metrics

Our ablation experiments and main results follow the evaluation protocol used in the BOP Challenge [5]. Here,
we formally define the error metrics used.

Visible Surface Discrepancy (VSD)

eVSD = avg
p∈V̂ ∪V̄

{
0 if p ∈ V̂ ∩ V̄ ∧ |D̂(p)− D̄(p)| < τ

1 otherwise,

where D̂(p) and D̄(p) are the depth maps obtained by rendering the object at the predicted pose and ground-truth
pose, respectively. V̂ and V̄ are visibility masks obtained by comparing each depth map with the sensor depth.
VSD treats indistinguishable poses as identical. VSD Recall is the percent of VSD scores less than 10 thresholds
ranging from 0.05 to 0.5, with the misalignment tolerance τ ranging from 5% to 50% of the object’s diameter.

Maximum Symmetry-Aware Surface Distance (MSSD)

eMSSD = minS∈SO
maxx∈VO

∥P̂x− P̄Sx∥2,

2

YCB-V [2] T-LESS [4] LM-O[1]

MSPD Recall MSSD Recall MSPD Recall MSSD Recall MSPD Recall MSSD Recall

Bidirectional (depth as variable) PnP 0.833 0.751 0.649 0.474 0.793 0.609
Unidirectional (depth as variable) PnP [render to image] 0.834 0.750 0.639 0.456 0.792 0.593
Unidirectional (depth as variable) PnP [image to render] 0.750 0.630 0.480 0.234 0.645 0.379

Multiview renders 0.833 0.751 0.649 0.474 0.793 0.609
Single render 0.814 0.727 0.619 0.429 0.772 0.569

Predicting per-pixel confidence weights 0.833 0.751 0.649 0.474 0.793 0.609
Uniform confidence 0.694 0.598 0.568 0.377 0.765 0.568

Revised approach (depth as variable) 0.833 0.751 0.649 0.474 0.793 0.609
Depth as variable but do not discard depth update 0.744 0.674 0.520 0.326 0.725 0.497

Use Gradient Clipping 0.833 0.751 0.649 0.474 0.793 0.609
No Gradient Clipping Training diverges causing NaNs

Bidirectional context features 0.833 0.751 0.649 0.474 0.793 0.609
Using unidirectional context features 0.848 0.764 0.647 0.452 0.807 0.608

Pose + Flow Loss 0.833 0.751 0.649 0.474 0.793 0.609
Flow Loss Only 0.760 0.666 0.589 0.378 0.741 0.521
Pose Loss Only 0.246 0.190 0.263 0.166 0.271 0.093

Depth-augmented PnP (predicting depth revisions) 0.842 0.765 0.647 0.465 0.803 0.616
No depth augmentation (no depth revisions) 0.833 0.751 0.649 0.474 0.793 0.609

Table 1: Additional ablation experiments using our method for RGB-Only input. We evaluate our method on
a held-out subset of training images. Initial poses are generated by randomly perturbing the ground truth pose.
Options used in our full RGB method are bolded.

YCB-V [2] T-LESS [4] LM-O [1]

MSPD Recall MSSD Recall MSPD Recall MSSD Recall MSPD Recall MSSD Recall

Bidirectional context features 0.924 0.955 0.685 0.582 0.828 0.788
Unidirectional context features 0.910 0.944 0.685 0.582 0.826 0.784

Table 2: Additional ablation experiments using our method for RGB-D input. We evaluate our method on held-out
training images. Initial poses are generated by randomly perturbing the ground truth pose. Options used in our
full method are bolded.

where SO are the rotation symmetries of object O and VO are its vertices. P̂ and P̄ are the predicted and ground
truth poses. MSSD is useful for robotic manipulation where the maximum surface deviation is related to the
chance of a successful grasp. Compared to the average distance used in ADD/ADI, the maximum distance is less
dependant on the sampling density of vertices. MSSD Recall is the percent of MSSD scores less than 10 thresholds
ranging from 5% to 50% of the object’s diameter.

Maximum Symmetry-Aware Projection Distance (MSPD)

eMSPD = minS∈SO
maxx∈VO

∥proj(P̂x)− proj(P̄Sx)∥2,

where VO, SO, P̂, P̄ are defined above. MSPD evaluates the perceivable discrepancy, which is important for
augmented reality applications. Like MSSD, MSPD also measures the maximum distance instead of the average
in order to be robust to the sampling density of vertices. MSPD Recall is the percent of MSPD scores less than
10 thresholds ranging from 5 to 50 (measured in pixels).

5 Additional Ablations

Gradient Clipping Treating depth as a variable in the optimization leads to unstable behavior after several
thousand training steps. We solve this problem by clipping the gradients of the input to the GRU to a maximum
of 0.01 in the middle of the backward pass.

Discarding Depth Update In the RGB setting, we jointly optimize the pose and depth together. We then
discard the depth update and generate a new depth map by rendering the updated pose (see Sec 2). This works

3

better than jointly optimizing pose and depth together but applying the depth update to the previous estimate
instead of discarding it.

RGB-Only Bidirectional (depth as variable) PnP In the RGB setting, bidirectional PnP is helpful on T-
LESS while benign on LM-O and YCB-V. On YCB-V, our method converges to an accurate pose even when only
using correspondences from the input image to the rendered image (Tab. 1). This indicates that the induced flow
is sufficiently accurate even when using a depth approximation in the mapping function Π .

RGB-Only Depth-augmented PnP In the RGB setting, depth residuals are helpful on YCB-V and LM-O
but not on T-LESS (Tab. 1). The inconsistent benefit could arise from the fact that the depth in the image is
generated from the current pose estimate, and therefore predicting the appropriate depth residuals in the GRU is
more challenging.

Bidirectional Context features There is a significant domain gap between the input images and the rendered
images. This is due to, among other things, innaccurate meshes resulting from imperfect scans, significant lighting
differences and different reflectance properties. We evaluate the importance of extracting contextual features from
both images, contrary to RAFT [9] which operates in a single image domain. Tabs. 1 & 2 show that using
contextual information from only the source image is sufficient to establish accurate correspondences.

Figure 1: Additional qualitative results on the YCB-V Dataset. Our method incorrectly orients the bowl and spam
in the far left image.

4

(a) Linemod (Occluded) Accuracy (b) YCB-V Accuracy

Figure 2: Accuracy Per-Object on the Linemod (Occluded) and YCB-V Datasets

Figure 3: Additional qualitative results on the T-LESS Dataset. Our method incorrectly positions the purple
object in the far right image.

5

Figure 4: Qualitative results on the Linemod (Occluded) Dataset

6

Licenses: Linemod and T-LESS licensed under CC BY 4.0. Linemod (Occluded) licensed under CC BY-SA 4.0.
YCB-V licensed under MIT. Cosypose models licensed under MIT.

References

[1] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and Carsten Rother. Learning 6d
object pose estimation using 3d object coordinates. In European conference on computer vision, pages 536–551. Springer,
2014. 3

[2] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar. The ycb object
and model set: Towards common benchmarks for manipulation research. In 2015 international conference on advanced
robotics (ICAR), pages 510–517. IEEE, 2015. 3

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. 1

[4] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jiri Matas, Manolis Lourakis, and Xenophon Zabulis. T-less: An rgb-d
dataset for 6d pose estimation of texture-less objects. In 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 880–888. IEEE, 2017. 3

[5] Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, Anders GlentBuch, Dirk Kraft, Bertram Drost, Joel Vidal,
Stephan Ihrke, Xenophon Zabulis, et al. Bop: Benchmark for 6d object pose estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 19–34, 2018. 2

[6] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef Sivic. Cosypose: Consistent multi-view multi-object 6d pose
estimation. In European Conference on Computer Vision, pages 574–591. Springer, 2020. 2

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017. 2

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017. 2

[9] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In European conference on
computer vision, pages 402–419. Springer, 2020. 1, 4

7

	Additional inputs to the GRU
	RGB-Only Optimization
	Implementation Details:
	Accuracy Metrics
	Additional Ablations

