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1. Overview
In this supplementary material, we provide an extra de-

scription about the Articulation Knowledge Base (AKB-48)
in our paper, which consists of the fast articulation knowl-
edge modeling (FArM) pipeline, category specification and
dataset analysis in Section 2. In addition, we provide more
details about the AKBNet in Section 3 and experiments in
Section 4. Finally, more qualitative results are shown in
Section 5.

2. Articulation Knowledge Base, AKB-48, Ex-
tended

2.1. Fast Articulation Knowledge Modeling (FArM)
Pipeline, Extended

We build our own object recording system with 3D sen-
sors, which is developed with three components: EinScan
Pro 2020 for scanning1, Intel RealSense D435 for RGB-D
multi-view snapshot, multi-scale rotating turntables and lift
bracket. In our setup, each object can be scanned within 5
minutes. To solve the inner hole problem during scan-
ning the objects, we split all the real-world object into two
groups: Firstly, all the parts of the articulated object could
be disassembled, e.g. drawer rack and columns. We scan
these parts separately and then manually combine them to-
gether. Secondly, the parts of the articulated cannot be dis-
assembled, e.g. box and stapler. We scan them in a full open
way and then manually segment them into several mov-
able parts. During segmentation, there might be holes at
the junction of parts. To deal with this problem, we fill the
holes by their curvatures.

After model acquisition by our recording system, we a
3D user interface that allows the annotators can operate on
3D shapes. The FArM interface is illustrated in Fig. 1. Here
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1https://www.einscan.com

the interface integrates the functions of object alignment,
part segmentation and joint annotation.

Object Alignment. At the top of the interface, we pro-
vide 7 primitive shapes for object alignment, such as cube,
sphere and cylinder. Each primitive shape holds it own
(x, y, z) coordinate frame. The user can select one of them
according to the basic shape of the input model. During
alignment, the user is required to fit the selected primitive
shape to the input model controlled by keyboard, mouse and
assigning the pose directly. In our modeling tool, all the
primitive shapes are parametric so the user can also re-scale
them to achieve better fitting result. Finally, the alignment is
completed when the user is able to perfectly fit the primitive
shape into the input model.

Part Segmentation. Different from the Question-
Answering system adopted in PartNet [6], we provide a
mesh cutting method with multi-view observation. In part
segmentation, the user is able to draw arbitrary 3D poly-
gon in input scanned mesh/point cloud to annotate initial
part segmentation. In addition, we also provide pre-defined
part point cloud from similar geometric shapes, which could
speed up part segmentation process.

Joint Annotation. when annotating joint properties, user
could give prior information such as joint type, joint limit
and joint axis. In addition, multi-view RGB-D images input
are also supported for annotate joint. Our FArM tool pro-
vides to animate the initially annotated part segmentation
and joint properties for video verification. The animation
can be paused at any time for instant adjustment.

The annotated articulated objects are described with the
widely used Unified Robot Description Format (URDF) [5],
an XML file format to describe all elements of articulated
objects with chain or tree structure, including joint prop-
erties and part meshes. The base link is the origin of the
kinematic tree.
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Figure 1. Our FArM interface. There are three sub-processes for articulation modeling: (1) object alignment, part segmentation and joint
annotation. For physics annotation, we record per-part mass and volume in real-world, then compute inertia moment and friction using the
mass and shape.

2.2. Dataset Analysis, Extended

Our AKB-48 dataset contains 48 categories and 2,037
shapes of articulated objects. Each of them provides rich ap-
pearance, semantics, structure and physics annotation. The
total models can be accessed at https://liuliu66.
github.io/AKB-48.

To further illustrate the advantages of AKB-48, we in-
vestigate the intra-variety in one category of our dataset.
We define a shape distribution as metric to measure model
shape variety. In detail, we extract Intrinsic Shape Signa-
ture (ISS) keypoints [10] from each model. The more ISS
keypoints extracted, the more complicated shape is. Given
these ISS keypoints, we compute the geometric distance be-
tween each keypoint pair, and then do frequency statistics
for all the distances [7]. Finally, we project these histograms
with t-SNE [9], as shown in Fig. 2. As it could be observed,
the models in our AKB-48 hold a large shape variety in one
category.

3. AKBNet, Extended
3.1. Pose Module, Extended

Our pose module consists of two sub-modules: part sub-
module and joint sub-module.

Part Sub-Module. Given the local point cloud P ∈
RN×3 reconstructed from the input RGB-D image with de-
tected bounding box, we use a PointNet++ [8] architecture
to process the P for feature extraction. At the end of Point-
Net++, we build two parallel branches with K + 1 and

Figure 2. Object shape distribution: Visualization of t-SNE em-
bedding of ISS histograms. A point stands for an instance and a
color stands for a category.

3(K + 1) channels for part segmentation S and per-part
NOCS map [4] P ′ ∈ RN×3 prediction, where K indicates
the maximum number of parts and 1 indicates the back-
ground. The per-part NOCS map is defined for each sep-
arate rigid part on rest state. Finally, we could predict part
segmentation label si and per-part NOCS coordinate p′

i on
ith point.

Joint Sub-Module. Current methods such as A-NCSH
[4] for the CAPE setting require fixed kinematic structure
as prior knowledge. Joint sub-module aims to handle var-
ied kinematic structures in one semantic category. Here we
assume that all the parts and joints have one-to-one corre-
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spondence. Therefore we can predict joint properties for
each corresponding segmented part. The feature extractor is
a PointNet++ architecture shared with part sub-module and
we build three parallel branches for joint type classification,
joint location prediction and joint axis prediction. Specif-
ically, the joint type branch has 4 channels at the end of
the MLPs, where we summarize four different joint types,
including fixed, prismatic, revolute and screw. The joint lo-
cation qk on kth part is predicted by the heatmap and offset
scheme, followed by A-NCSH [4]. The joint axis uk on kth
part is predicted by a voting scheme as:

uk =

∑N
j=i uk

i 1(si = k)∑N
i=1 1(si = k)

(1)

Specifically, we use the cross-entropy loss for part seg-
mentation task Lseg and joint type classification Ltype.
Then L2 is adopted as NOCS map loss Lnocs, joint loca-
tion Lloc and joint axis Lax prediction tasks.

Lseg =
∑M

i=1
CE(si, s

∗
i )

Lnocs =
∑M

i=1
1(s∗i > 0)∥p′

i − p′∗
i ∥2

Lloc =
∑M

i=1
1(s∗i > 0)∥qi − q∗

i ∥2

Lax =
∑M

i=1
1(s∗i > 0)∥ui − u∗

i ∥2

Ltype =
∑M

i=1
CE(δi, δi

∗)

(2)

where 1(s∗j > 0) indicates the loss is only accounted for
when the part is foreground. Finally, with predicted part
segmentation, NOCS map and joint properties, we follow
the pose optimization algorithm with kinematic constrains
[4] to recover the 6D pose for each rigid part.

3.2. Manipulation Module, Extended

Physics Prediction Sub-Module. Apart from the rein-
forcement learning agent for manipulation, we also per-
form the physics prediction sub-module on the manipula-
tion module of AKBNet. The input is the per-part feature
vectors extracted from part segmentation results in the pose
module. Then we train an extra 3-layer MLP with ReLU
activation function and build three branches at the end of
the layer, with 1, 6 and 1 channels respectively, in which 1
indicates the per-part mass mk prediction, 6 indicates the
per-part inertia moment Ik = {Ikxx, Ikxy, Ikxz, Ikyy, Ikyz, Ikzz},
and the other 1 indicates the per-part friction value µk. The
training loss functions for these three branches are L2 loss.

4. Experiments, Extended

4.1. Experimental Setup, Extended

We use PointNet++ [8] to train our pose module and
shape module. For optimizer, we adopt the Adam algo-
rithm with an initial learning rate of 0.001 and batch size
16. The learning rate will drop by 0.7 at every 2 and 4
epochs on the pose module and shape module. Dropout 0.5
is adopted.The total training epochs are 50 and 100. During
training data pre-processing, we adopt to down-sample the
input point cloud with voxel size 0.005 and then randomly
sample 2048 points for each instance. For data split, we use
80% of objects for training and 20% for testing. Our model
is implemented on PyTorch and 4 TITAN RTX GPUs.

We use a 3-layer MLP with ReLU activation function for
feature extraction on manipulation module and the number
of the final channels is 4 that corresponds to 4 actions. The
total training step is 1e6. Batch size is 512. Learning rate is
0.001. The optimizer is Adam.

4.2. Manipulation Module Performance, Extended

The learning curves of Reinforcement agent on open-
ing and pulling tasks using TQC [3]+HER [1] and SAC
[2]+HER [1] are illustrated in Fig. 3. We train 68 and 32
instances from AKB-48 to train the two RL algorithms with
different random seeds, with each performing one evalua-
tion rollout every 1000 environment steps. The solid curves
correspond to the mean and the shaded region to the mini-
mum and maximum returns over the five trials.

To validate the effect of physics in our AKB-48 for ma-
nipulation, we build an experiment that drives a robot arm
(Franka Emika Panda2) to grip one of the instances in sim-
ulation. We also use a Franka Panda Arm to grip the cor-
responding real-world object. As illustrated in Fig. 4, we
record the force feedback during the robot arm gripping the
object. As it can be seen, with the physics information, the
force feedback in simulation shows to be similar to the force
curve in the real world. Therefore, we can conclude that the
physics information annotated in AKB-48 is of importance
in robotics research.

5. Qualitative Results, Extended

Qualitative results of pose module, shape module and
manipulation module of AKBNet are illustrated in Fig. 5,
Fig. 6 and Fig. 7.
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(a) Performance on opening task. (b) Performance on pulling task.

Figure 3. Learning curves on opening and pulling manipulating tasks. We use SAC+HER and TQC+HER to train the Reinforcement
Learning agent.
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Figure 4. Force feedback during the robot arm gripping the object. We compare the force curves in the real world and the simulation with
our predicted physics information. The robot arm is Franka Emika Panda.

Figure 5. Qualitative results on pose module.



Figure 6. Qualitative results on shape module.

Figure 7. Qualitative results on manipulation module.
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