
Appendix: A ConvNet for the 2020s

Zhuang Liu1,2 Hanzi Mao1 Chao-Yuan Wu1 Christoph Feichtenhofer1 Trevor Darrell2 Saining Xie1

1Facebook AI Research (FAIR) 2UC Berkeley

In this Appendix, we provide further experimental details
(§A), robustness evaluation results (§B), more modernization
experiment results (§C), and a detailed network specifica-
tion (§D). We further benchmark model throughput on A100
GPUs (§E). Finally, we discuss the limitations (§F) and
societal impact (§G) of our work. Our code is available
at https://github.com/facebookresearch/

ConvNeXt.

A. Experimental Settings
A.1. ImageNet (Pre-)training

We provide ConvNeXts’ ImageNet-1K training and
ImageNet-22K pre-training settings in Table 5. The settings
are used for our main results in Table 1 (Section 3.1). All
ConvNeXt variants use the same setting, except the stochas-
tic depth rate is customized for model variants.

For experiments in “modernizing a ConvNet” (Section 2),
we also use Table 5’s setting for ImageNet-1K, except EMA
is disabled, as we find using EMA severely hurts models
with BatchNorm layers.

For isotropic ConvNeXts (Section 3.2), the setting for
ImageNet-1K in Table A is also adopted, but warmup is ex-
tended to 50 epochs, and layer scale is disabled for isotropic
ConvNeXt-S/B. The stochastic depth rates are 0.1/0.2/0.5
for isotropic ConvNeXt-S/B/L.

A.2. ImageNet Fine-tuning
We list the settings for fine-tuning on ImageNet-1K in

Table 6. The fine-tuning starts from the final model weights
obtained in pre-training, without using the EMA weights,
even if in pre-training EMA is used and EMA accuracy is
reported. This is because we do not observe improvement if
we fine-tune with the EMA weights (consistent with observa-
tions in [73]). The only exception is ConvNeXt-L pre-trained
on ImageNet-1K, where the model accuracy is significantly
lower than the EMA accuracy due to overfitting, and we
select its best EMA model during pre-training as the starting
point for fine-tuning.

In fine-tuning, we use layer-wise learning rate decay [6,
12] with every 3 consecutive blocks forming a group. When
the model is fine-tuned at 3842 resolution, we use a crop ratio

ConvNeXt-T/S/B/L ConvNeXt-T/S/B/L/XL

(pre-)training config ImageNet-1K ImageNet-22K
2242 2242

weight init trunc. normal (0.2) trunc. normal (0.2)
optimizer AdamW AdamW
base learning rate 4e-3 4e-3
weight decay 0.05 0.05
optimizer momentum �1,�2=0.9, 0.999 �1,�2=0.9, 0.999
batch size 4096 4096
training epochs 300 90
learning rate schedule cosine decay cosine decay
warmup epochs 20 5
warmup schedule linear linear
layer-wise lr decay [6, 12] None None
randaugment [14] (9, 0.5) (9, 0.5)
mixup [90] 0.8 0.8
cutmix [89] 1.0 1.0
random erasing [91] 0.25 0.25
label smoothing [69] 0.1 0.1
stochastic depth [37] 0.1/0.4/0.5/0.5 0.0/0.0/0.1/0.1/0.2
layer scale [74] 1e-6 1e-6
head init scale [74] None None
gradient clip None None
exp. mov. avg. (EMA) [51] 0.9999 None

Table 5. ImageNet-1K/22K (pre-)training settings. Multiple
stochastic depth rates (e.g., 0.1/0.4/0.5/0.5) are for each model
(e.g., ConvNeXt-T/S/B/L) respectively.

of 1.0 (i.e., no cropping) during testing following [2, 74, 80],
instead of 0.875 at 2242.

A.3. Downstream Tasks

For ADE20K and COCO experiments, we follow the
training settings used in BEiT [6] and Swin [45]. We also
use MMDetection [10] and MMSegmentation [13] toolboxes.
We use the final model weights (instead of EMA weights)
from ImageNet pre-training as network initializations.

We conduct a lightweight sweep for COCO experiments
including learning rate {1e-4, 2e-4}, layer-wise learning rate
decay [6] {0.7, 0.8, 0.9, 0.95}, and stochastic depth rate
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. We fine-tune the ImageNet-22K
pre-trained Swin-B/L on COCO using the same sweep. We
use the official code and pre-trained model weights [3].

The hyperparameters we sweep for ADE20K experiments
include learning rate {8e-5, 1e-4}, layer-wise learning rate

12

https://github.com/facebookresearch/ConvNeXt
https://github.com/facebookresearch/ConvNeXt

ConvNeXt-B/L ConvNeXt-T/S/B/L/XL

pre-training config ImageNet-1K ImageNet-22K
2242 2242

fine-tuning config ImageNet-1K ImageNet-1K
3842 2242 and 3842

optimizer AdamW AdamW
base learning rate 5e-5 5e-5
weight decay 1e-8 1e-8
optimizer momentum �1,�2=0.9, 0.999 �1,�2=0.9, 0.999
batch size 512 512
training epochs 30 30
learning rate schedule cosine decay cosine decay
layer-wise lr decay 0.7 0.8
warmup epochs None None
warmup schedule N/A N/A
randaugment (9, 0.5) (9, 0.5)
mixup None None
cutmix None None
random erasing 0.25 0.25
label smoothing 0.1 0.1
stochastic depth 0.8/0.95 0.0/0.1/0.2/0.3/0.4
layer scale pre-trained pre-trained
head init scale 0.001 0.001
gradient clip None None
exp. mov. avg. (EMA) None None(T-L)/0.9999(XL)

Table 6. ImageNet-1K fine-tuning settings. Multiple values (e.g.,
0.8/0.95) are for each model (e.g., ConvNeXt-B/L) respectively.

decay {0.8, 0.9}, and stochastic depth rate {0.3, 0.4, 0.5}.
We report validation mIoU results using multi-scale testing.
Additional single-scale testing results are in Table 7.

backbone input crop. mIoU
ImageNet-1K pre-trained

•ConvNeXt-T 5122 46.0
•ConvNeXt-S 5122 48.7
•ConvNeXt-B 5122 49.1

ImageNet-22K pre-trained

•ConvNeXt-B‡ 6402 52.6
•ConvNeXt-L‡ 6402 53.2
•ConvNeXt-XL‡ 6402 53.6

Table 7. ADE20K validation results with single-scale testing.

B. Robustness Evaluation
Additional robustness evaluation results for ConvNeXt

models are presented in Table 8. We directly test our
ImageNet-1K trained/fine-tuned classification models on sev-
eral robustness benchmark datasets such as ImageNet-A [33],
ImageNet-R [30], ImageNet-Sketch [78] and ImageNet-
C/C̄ [31, 48] datasets. We report mean corruption error
(mCE) for ImageNet-C, corruption error for ImageNet-C̄,
and top-1 Accuracy for all other datasets.

ConvNeXt (in particular the large-scale model variants)
exhibits promising robustness behaviors, outperforming
state-of-the-art robust transformer models [47] on several

benchmarks. With extra ImageNet-22K data, ConvNeXt-
XL demonstrates strong domain generalization capabilities
(e.g. achieving 69.3%/68.2%/55.0% accuracy on ImageNet-
A/R/Sketch benchmarks, respectively). We note that these ro-
bustness evaluation results were acquired without using any
specialized modules or additional fine-tuning procedures.

Model Data/Size FLOPs / Params Clean C (#) C̄ (#) A R SK

ResNet-50 1K/2242 4.1 / 25.6 76.1 76.7 57.7 0.0 36.1 24.1

Swin-T [45] 1K/2242 4.5 / 28.3 81.2 62.0 - 21.6 41.3 29.1
RVT-S* [47] 1K/2242 4.7 / 23.3 81.9 49.4 37.5 25.7 47.7 34.7
ConvNeXt-T 1K/2242 4.5 / 28.6 82.1 53.2 40.0 24.2 47.2 33.8
Swin-B [45] 1K/2242 15.4 / 87.8 83.4 54.4 - 35.8 46.6 32.4
RVT-B* [47] 1K/2242 17.7 / 91.8 82.6 46.8 30.8 28.5 48.7 36.0
ConvNeXt-B 1K/2242 15.4 / 88.6 83.8 46.8 34.4 36.7 51.3 38.2

ConvNeXt-B 22K/3842 45.1 / 88.6 86.8 43.1 30.7 62.3 64.9 51.6
ConvNeXt-L 22K/3842 101.0 / 197.8 87.5 40.2 29.9 65.5 66.7 52.8
ConvNeXt-XL 22K/3842 179.0 / 350.2 87.8 38.8 27.1 69.3 68.2 55.0

Table 8. Robustness evaluation of ConvNeXt. We do not make
use of any specialized modules or additional fine-tuning procedures.

C. Modernizing ResNets: detailed results
Here we provide detailed tabulated results for the mod-

ernization experiments, at both ResNet-50 / Swin-T and
ResNet-200 / Swin-B regimes. The ImageNet-1K top-1 ac-
curacies and FLOPs for each step are shown in Table 10
and 11. ResNet-50 regime experiments are run with 3 ran-
dom seeds.

For ResNet-200, the initial number of blocks at each stage
is (3, 24, 36, 3). We change it to Swin-B’s (3, 3, 27, 3) at
the step of changing stage ratio. This drastically reduces the
FLOPs, so at the same time, we also increase the width from
64 to 84 to keep the FLOPs at a similar level. After the step
of adopting depthwise convolutions, we further increase the
width to 128 (same as Swin-B’s) as a separate step.

The observations on the ResNet-200 regime are mostly
consistent with those on ResNet-50 as described in the main
paper. One interesting difference is that inverting dimensions
brings a larger improvement at ResNet-200 regime than at
ResNet-50 regime (+0.79% vs. +0.14%). The performance
gained by increasing kernel size also seems to saturate at
kernel size 5 instead of 7. Using fewer normalization layers
also has a bigger gain compared with the ResNet-50 regime
(+0.46% vs. +0.14%).

D. Detailed Architectures
We present a detailed architecture comparison between

ResNet-50, ConvNeXt-T and Swin-T in Table 9. For differ-
ently sized ConvNeXts, only the number of blocks and the
number of channels at each stage differ from ConvNeXt-T
(see Section 3 for details). ConvNeXts enjoy the simplic-
ity of standard ConvNets, but compete favorably with Swin
Transformers in visual recognition.

output size •ResNet-50 •ConvNeXt-T �Swin-T

stem 56⇥56 7⇥7, 64, stride 2 4⇥4, 96, stride 4 4⇥4, 96, stride 43⇥3 max pool, stride 2

res2 56⇥56

2

4
1⇥1, 64
3⇥3, 64
1⇥1, 256

3

5 ⇥ 3

2

4
d7⇥7, 96
1⇥1, 384
1⇥1, 96

3

5 ⇥ 3

2

4
1⇥1, 96⇥3

MSA, w7⇥7, H=3, rel. pos.
1⇥1, 96

3

5


1⇥1, 384
1⇥1, 96

� ⇥ 2

res3 28⇥28

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5 ⇥ 4

2

4
d7⇥7, 192
1⇥1, 768
1⇥1, 192

3

5 ⇥ 3

2

4
1⇥1, 192⇥3

MSA, w7⇥7, H=6, rel. pos.
1⇥1, 192

3

5


1⇥1, 768
1⇥1, 192

� ⇥ 2

res4 14⇥14

2

4
1⇥1, 256
3⇥3, 256

1⇥1, 1024

3

5 ⇥ 6

2

4
d7⇥7, 384
1⇥1, 1536
1⇥1, 384

3

5 ⇥ 9

2

4
1⇥1, 384⇥3

MSA, w7⇥7, H=12, rel. pos.
1⇥1, 384

3

5


1⇥1, 1536
1⇥1, 384

� ⇥ 6

res5 7⇥7

2

4
1⇥1, 512
3⇥3, 512

1⇥1, 2048

3

5 ⇥ 3

2

4
d7⇥7, 768
1⇥1, 3072
1⇥1, 768

3

5 ⇥ 3

2

4
1⇥1, 768⇥3

MSA, w7⇥7, H=24, rel. pos.
1⇥1, 768

3

5


1⇥1, 3072
1⇥1, 768

� ⇥ 2

FLOPs 4.1⇥ 109 4.5⇥ 109 4.5⇥ 109

params. 25.6⇥ 106 28.6⇥ 106 28.3⇥ 106

Table 9. Detailed architecture specifications for ResNet-50, ConvNeXt-T and Swin-T.

model IN-1K acc. GFLOPs
ResNet-50 (PyTorch [1]) 76.13 4.09
ResNet-50 (enhanced recipe) 78.82 ± 0.07 4.09
stage ratio 79.36 ± 0.07 4.53
“patchify” stem 79.51 ± 0.18 4.42
depthwise conv 78.28 ± 0.08 2.35
increase width 80.50 ± 0.02 5.27
inverting dimensions 80.64 ± 0.03 4.64
move up depthwise conv 79.92 ± 0.08 4.07
kernel size ! 5 80.35 ± 0.08 4.10
kernel size ! 7 80.57 ± 0.14 4.15
kernel size ! 9 80.57 ± 0.06 4.21
kernel size ! 11 80.47 ± 0.11 4.29
ReLU ! GELU 80.62 ± 0.14 4.15
fewer activations 81.27 ± 0.06 4.15
fewer norms 81.41 ± 0.09 4.15
BN ! LN 81.47 ± 0.09 4.46
separate d.s. conv (ConvNeXt-T) 81.97 ± 0.06 4.49
Swin-T [45] 81.30 4.50

Table 10. Detailed results for modernizing a ResNet-50. Mean
and standard deviation are obtained by training the network with
three different random seeds.

E. Benchmarking on A100 GPUs

Following Swin Transformer [45], the ImageNet models’
inference throughputs in Table 1 are benchmarked using a

model IN-1K acc. GFLOPs
ResNet-200 [29] 78.20 15.01
ResNet-200 (enhanced recipe) 81.14 15.01
stage ratio and increase width 81.33 14.52
“patchify” stem 81.59 14.38
depthwise conv 80.54 7.23
increase width 81.85 16.76
inverting dimensions 82.64 15.68
move up depthwise conv 82.04 14.63
kernel size ! 5 82.32 14.70
kernel size ! 7 82.30 14.81
kernel size ! 9 82.27 14.95
kernel size ! 11 82.18 15.13
ReLU ! GELU 82.19 14.81
fewer activations 82.71 14.81
fewer norms 83.17 14.81
BN ! LN 83.35 14.81
separate d.s. conv (ConvNeXt-B) 83.60 15.35
Swin-B [45] 83.50 15.43

Table 11. Detailed results for modernizing a ResNet-200.

V100 GPU, where ConvNeXt is slightly faster in inference
than Swin Transformer with a similar number of parameters.
We now benchmark them on the more advanced A100 GPUs,
which support the TensorFloat32 (TF32) tensor cores. We
employ PyTorch [50] version 1.10 to use the latest “Channel
Last” memory layout [22] for further speedup.

We present the results in Table 12. Swin Transformers and
ConvNeXts both achieve faster inference throughput than
V100 GPUs, but ConvNeXts’ advantage is now significantly
greater, sometimes up to 49% faster. This preliminary study
shows promising signals that ConvNeXt, employed with
standard ConvNet modules and simple in design, could be
practically more efficient models on modern hardwares.

model image
size FLOPs throughput

(image / s)
IN-1K / 22K

trained, 1K acc.
� Swin-T 2242 4.5G 1325.6 81.3 / –
•ConvNeXt-T 2242 4.5G 1943.5 (+47%) 82.1 / 82.9
� Swin-S 2242 8.7G 857.3 83.0 / –
•ConvNeXt-S 2242 8.7G 1275.3 (+49%) 83.1 / 84.6
� Swin-B 2242 15.4G 662.8 83.5 / 85.2
•ConvNeXt-B 2242 15.4G 969.0 (+46%) 83.8 / 85.8
� Swin-B 3842 47.1G 242.5 84.5 / 86.4
•ConvNeXt-B 3842 45.0G 336.6 (+39%) 85.1 / 86.8
� Swin-L 2242 34.5G 435.9 – / 86.3
•ConvNeXt-L 2242 34.4G 611.5 (+40%) 84.3 / 86.6
� Swin-L 3842 103.9G 157.9 – / 87.3
•ConvNeXt-L 3842 101.0G 211.4 (+34%) 85.5 / 87.5
•ConvNeXt-XL 2242 60.9G 424.4 – / 87.0
•ConvNeXt-XL 3842 179.0G 147.4 – / 87.8

Table 12. Inference throughput comparisons on an A100 GPU.
Using TF32 data format and “channel last” memory layout, Con-
vNeXt enjoys up to ⇠49% higher throughput compared with a
Swin Transformer with similar FLOPs.

F. Limitations
We demonstrate ConvNeXt, a pure ConvNet model, can

perform as good as a hierarchical vision Transformer on
image classification, object detection, instance and semantic
segmentation tasks. While our goal is to offer a broad range
of evaluation tasks, we recognize computer vision applica-
tions are even more diverse. ConvNeXt may be more suited
for certain tasks, while Transformers may be more flexible
for others. A case in point is multi-modal learning, in which
a cross-attention module may be preferable for modeling
feature interactions across many modalities. Additionally,
Transformers may be more flexible when used for tasks re-
quiring discretized, sparse, or structured outputs. We believe
the architecture choice should meet the needs of the task at
hand while striving for simplicity.

G. Societal Impact
In the 2020s, research on visual representation learn-

ing began to place enormous demands on computing re-
sources. While larger models and datasets improve per-
formance across the board, they also introduce a slew of
challenges. ViT, Swin, and ConvNeXt all perform best with
their huge model variants. Investigating those model designs

inevitably results in an increase in carbon emissions. One
important direction, and a motivation for our paper, is to
strive for simplicity — with more sophisticated modules,
the network’s design space expands enormously, obscuring
critical components that contribute to the performance dif-
ference. Additionally, large models and datasets present
issues in terms of model robustness and fairness. Further
investigation on the robustness behavior of ConvNeXt vs.
Transformer will be an interesting research direction. In
terms of data, our findings indicate that ConvNeXt models
benefit from pre-training on large-scale datasets. While our
method makes use of the publicly available ImageNet-22K
dataset, individuals may wish to acquire their own data for
pre-training. A more circumspect and responsible approach
to data selection is required to avoid potential concerns with
data biases.

