
Supplementary Material for “ActiveZero: Mixed Domain Learning for Active
Stereovision with Zero Annotation”

1. Additional Ablation Study
1.1. Effect of Simulation Ground-truth

In this section, we study the effect of using the super-
vised simulation disparity loss Ldisp during training. To do
so, we conduct experiments with and without Ldisp added
to the final loss term and observe their convergence rate as
well as final converged solution. Figure 1 shows that adding
simulation disparity loss (blue) helps the network converge
faster to the global optima.

Figure 1. Loss curve of training with and without simulation
disparity ground-truth

Method Abs depth err (mm) ↓ > 4mm ↓
w/o sim disp loss 4.729 0.367

sim disp loss 4.377 0.335

Table 1. Performance with and without auxiliary simulation
supervision

1.2. Patch Size of Reprojection Loss

In this section, we conduct an ablation study on the
patch size of the patch-wise reprojection loss. In the main
paper, we chose a patch size of 11. For this study, we
change patch size to 7, 15 and 21, train each one with only
the real reprojection loss term, and evaluate them on the
same testing dataset. Table 2 suggests patch size 15 has
the best result on the absolute depth error (abs depth err)

metric while patch size 21 has the lowest percentage of
depth outliers with absolute depth error larger than 4mm
(>4mm). However, the loss curve in Fig. 2 indicates
that patch size 11 converges faster than the other patch
sizes. Considering patch size 11 also occupies less GPU
memory during training, we choose patch size 11 in our
main experiments.

Patch size Abs depth err (mm) ↓ > 4mm ↓
7 5.507 0.466

11 5.115 0.393
15 5.114 0.386
21 5.402 0.385

Table 2. Performance of different patch size

Figure 2. Loss curve of training using different patch sizes

1.3. Loss Ratio between Simulation and Real
Domain

In this section, we conduct an ablation study on the loss
weight λs and λr described in Sec. 3.3 of the main paper.
In our main experiment, we use λs = 0.01 and λr = 2.
We change λs and λt to different values and test the trained
models on the testing dataset. The results in Tab. 3 indicate
that when λs = 0.01 and λr = 2, the network achieves the
best result, which is consistent with our experiment setting.
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λs λr Abs depth err (mm) ↓ > 4mm ↓
1 0.5 7.578 0.548
1 1 6.064 0.455
1 2 5.672 0.446

0.05 2 5.543 0.433
0.01 2 4.377 0.335
0.002 2 4.683 0.368

Table 3. Performance of different loss weight

1.4. Choice of backbones

In this section, we study different backbones in our
proposed pipeline, which includes DispNet (2016), RAFT
(2020), as well as PSMNet (2018). The results are shown in
Tab. 4. Compared to their original performance, our frame-
work greatly improved each backbone’s depth estimation
performance.

Backbone Direct transfer LCN re-proj Temporal IR re-proj
DispNet 82.906 43.781 18.069
PSMnet 16.854 10.598 4.377

Raft 6.521 5.890 4.738

Table 4. Absolute Depth Error (mm) of different backbones

2. Time Budget and Inference Time

Temporal IR reprojection is only used during training on
real images. Collection is done offline and takes ∼0.7s to
capture one frame. During testing, the temporal IR image
sequences are not required. We measure the inference time
of our proposed pipeline in Tab. 5. Our method has an
average inference time of 0.25 seconds per image pair with
a resolution of 960×540. Compared to StereoGAN with
PSMNet backbone, our method achieves faster inference
times while also having better performance. We will
continue to reduce our inference time in future studies.

Method Inference Time(s) ↓
StereoGAN+PSM 0.303

Our Method 0.256

Table 5. Inference time of StereoGAN+PSM and our method

3. Pointcloud visualization of the estimated
depth

We provide visualizations from novel views for Re-
alSense measurements and our depth prediction on the same
test scene below. As shown, our prediction contains less
noise and is more complete in the highlighted transparent
area.

Realsense point cloud Our Method

Figure 3. Depth estimation (point cloud) at a novel view

4. Performance On Different Dataset
In this section, we test our trained model on scene

structures and moving objects different from our training
data. Our model can make accurate and complete depth
predictions on moving objects and people, demonstrating
the generalizablity of the network from our method. Results
are shown in Fig. 4

5. More Details of Datasets
The training simulation dataset has 18000 image pairs

with random camera extrinsics, shape primitives, textures
and poses. As in Fig. 5 (a), in order to make the scene more
complicated, the primitives can overlap with each other and
are not strictly attached to the table. Therefore, they can
either overlap with the table or float above the table. In
Fig. 5 (a), the textures are randomly selected to improve
generalizability. For IR images in Fig. 5 (a), the simulated
IR pattern is projected onto each scene of the simulation
dataset.

Samples of the training real dataset are shown in Fig. 5
(b). The objects in the training dataset are not present
in the testing dataset and the ground truth depths are not
required for this dataset. To preserve its generalizability,
the optical properties of the objects are diversely selected.
In Fig. 5 (b), there exists objects that are transparent (glass
bottle), specular (the cover of the glass bottle) and diffused
(black paper box). These objects have different abilities to
reflect IR pattern as seen in Fig. 5 (b). Temporal IR images
are collected by adjusting the power of the pattern emitter.
There are 6 images with increasing IR power in each scene.

The testing dataset contains objects that are never used in
training to best represent the generalizability of our method.
As shown in Fig. 5 (c) and (d), the object properties are
also diversely selected. For example, this dataset contains
specular objects (metal ball), transparent objects (bottled
water) and diffused objects (printed cell phone). The IR
pattern is collected by adjusting the IR emitter to the max
power used in the training dataset. To obtain accurate
ground truth, we align the scene using the same object poses
and camera parameters in simulation, as shown in Fig. 5 (c)
and (d).



(a) Results and comparison of our method and realsense on dynamic scenes

(b) Results and comparison of our method and realsense scenes with moving objects and people
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Figure 5. More examples of our datasets. (a) is training simulation dataset, (b) is training real dataset, (c) and (d) are testing simulation and
real pixel-wise aligned pairs.


