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1. Experimental Details

1.1. Class Horizontal and Vertical Distribution

We describe the details of how to achieve class horizontal
and vertical distribution labels based on the Ground Truth
for human parsing. We utilize LIP dataset as the example
images for introducing our process.

One-hot Encoding: In the scene segmentation and hu-
man parsing task, for each image, there is one correspond-
ing ground truth that assigns a semantic category integer
number for each pixel. To explicitly consider each cate-
gory distribution trait in 2D space, the direct technique is
to calculate each category bounding box. However, bound-
ing box only reflects the distribution range in horizontal and
vertical dimensions. It does not represent the distribution
density in the class bounding box. As a result, bounding
box has limitation in the description of class distribution
trait. In our paper we do not adopt bounding box as other
methods [1–4] do. We intentionally calculate each class
spatial distribution from one-hot encoding feature of paring
ground truth. Given the ground truth L, we use the one-hot
encoding mechanism to encode each categorical integer la-
bel in the ground truth to generate a 3D matrix M of size
N ×H ×W , here N is category number, H and W are the
height and width of ground truth, respectively.

Statistic of Distribution Trait: Given matrix M , we can
count the number of 1 in horizontal and vertical directions.
The larger of the statistic number means the greater of the
distribution density. By this means, we can obtain each cat-
egory horizontal and vertical distribution traits that contain
more information than bounding box. To regularize each
class distribution density in the range of 0 to 1, we divide
each row’s value by its max value. In LIP dataset, there are
totally 20 classes including background. Therefore, we ob-
tain 20 classes horizontal and vertical distribution maps. In
most case, the background surrounds other classes and its
distribution determines by all other categories together. So,

Figure 1. Visual examples of our CDGNet in LIP database. Each
class horizontal and vertical distribution labels that have been cal-
culated from the ground truth of parsing. The generated labels can
act as additional supervision signal to improve the parsing perfor-
mance. Deeper color denotes higher probability of class existence.

we exclude background when utilizing class distribution. It
is easy to implement by setting the corresponding row to 0,
as pseudocode Algorithm 1 shows. The example of every
class horizontal and vertical distributions in a single human
image is as Fig. 1 shows. Each class horizontal and verti-
cal distribution range and density are clearly expressed in
the heatmaps, such as hair, coat and pant, etc. The distribu-
tion range and density of each class are even more obvious
in Fig. 2. For instance, the hats that the two persons wear
in the bottom of Fig. 2, there are two highlight areas in the
vertical and horizontal heatmaps, respectively, correspond-
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Pseudo-code. PyTorch-like style pseudocode for generating
class horizontal and vertical distribution. —Algorithm 1

# L, class num: Ground truth of parsing and the

class number.

# GDh
, GDv: Class horizontal and vertical

distribution labels.

# reshape the ground truth

h,w = L.shape

L=L.view(h*w)

# one-hot encoding of ground truth

M=torch.zero(h*w,class num)

M.scatter (1,L,1)

M=M.transpose(0,1)

M=M.view(class num,h,w)

# Statistic on vertical direction

GDh=torch.zeros(class number,w)

GDh=(torch.sum(M,dim=1)).float()

GDh[0]=0

max=torch.max(GDh,dim=1)[0]

max = max.unsqueeze(2)

GDh=GDh/(max+1e-5)

# Statistic on Horizontal direction

GDv=torch.zeros(class number,h)

GDv=(torch.sum(M,dim=2)).float()

GDv[0]=0

max=torch.max(GDv,dim=1)[0]

max = max.unsqueeze(2)

GDv=GDv/(max+1e-5)

# return class horizontal and vertical

distribution lables

return GDh,GDv

ing to the hats positions and coverage ranges of the two per-
sons, which benefit parsing performance of this category.
Although there are multiple persons in the same image, we
can see from Fig. 2 that the class distribution traits success-
fully reflect each human part location and distribution range
information. The effect of the distribution map is more sig-
nificant for multiple human parsing than single human pars-
ing. We achieve 4.5% higher than previous state-of-the-art
performance in terms of mIoU, as viewed in Table 4 of the
main body of the paper.

1.2. CDGNet Network Structure

The structure of CDGNet has been introduced in the
main paper. We can divide the whole network into three
parts: Horizontal and vertical feature learning, distribution

Figure 2. Visual examples of our CDGNet in CIHP database. Each
class horizontal and vertical distributions in multiple human im-
ages. Deeper color denotes higher probability of class existence.

signal supervision, and aggregating of distribution feature.
The pseudocode is as Algorithm 2 shows. We argue that the
network structure apply to any dataset in which each class
has its solely distribution rule, not limited to human parsing
datasets, such as face parsing, animal parsing, etc. We will
confirm this in future.

Horizontal and Vertical Feature Learning: To produce
the required distribution feature, we leverage pooling opera-
tions on the input feature. There are two pooling techniques
to select, average pooling and max pooling. To simulate
the statistical operation, we adopt average pooling instead
of max pooling. After the operation of pooling, we use a
convolution with kernel size 3 activate by relu function and
decrease the channel number to half of the input channel.
In our paper, the channel of input feature is 512, so, we de-
crease the number to 256.

Distribution Signal Supervision: We leverage the gen-
erated horizontal and vertical distribution of each category
as supervision signal to make the network learning each
class distribution prior. We utilize the 1D convolution of
kernel size 3 and activate the feature by sigmoid function.
Here, the reason we adopt sigmoid instead of softmax is
that there exits multiple classes in each row of horizontal
and vertical distribution maps. It is possible that multiple
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Pseudo-code. PyTorch-like style pseudocode for class distribu-
tion guided network. —Algorithm 2

# Xi: input feature

# Xo,Ph,Pv: class distribution guided feature,

class horizontal and vertical distribution

predictions.

# Average pooling along horizontal and vertical

directions

n,c,h,w=Xi.size()

Zv=nn.AdaptiveAvgPool2d((1,w))(Xi).squeeze(2)

Zh=nn.AdaptiveAvgPool2d((h,1))(Xi).squeeze(3)

# 1D convolution with kernel size 3 and relu

activation apply to the feature. The channel

number decreases from 512 to 256.

Zh=conv×3 relu(Zh)

Zv=conv×3 relu(Zv)

# achieve predictions of class horizontal and

vertical distribution

Ph=conv×3 sigmoid(Zh)

Pv=conv×3 sigmoid(Zv)

# 1D convolution with kernel size 7 and sigmoid

activation apply to the feature. The channel

number increase from 256 to 512.

Ah=conv×7 sigmoid(Zh)

Av=conv×7 sigmoid(Zv)

# upsampling the features Ph and Pv to have the

same size with the input feature Xi

A
′
h=upsampling(Ah,(h,w))

A
′
v=upsampling(Av,(h,w))

# aggregate horizontal and vertical distribution

features, here α and β are two learnable

parameters

Ad=α×A
′
h + β ×A

′
v

# augment input feature using CDG feature

and apply the convolution to the concatenated

features

fea aug = Ad ×Xi

fea cdg = torch.cat([Xi,fea cdg, Ad],dim=1)

Xo=conv3×3 relu(fea cdg)

# return the output feature Xo, prediction

of horizontal distribution Ph and vertical

distribution Pv

return Xo, Ph, Pv

Table 1. Comparison for computational complexity at LIP dataset.
* is the performance without the NLM module.

Method Param FLOPs mIoU
Baseline (CE2P) 67.4M 80.8G 53.10

CorrPM (Human Pose) 71.5M 147.5G 55.33
Ours* 71.1M 81.7G 59.04
Ours 79.0M 130.7G 59.93

classes have high distribution values, simultaneously.

Aggregating of Distribution Feature: There are several
strategies to aggregate different feature together, concate-
nation, addition, and multiplication. In our paper, we ex-
perimentally choose addition which is efficient and effec-
tive to fuse class horizontal and vertical distribution traits to
achieve CDG feature. The channel number of CDG feature
is 512 which is identical to the input feature.

Computational complexity: Table 1 shows the parame-
ter comparison between the baseline, CorrPM and our net-
work. Compared to the baseline, our full network (with
NLM) requires +11.6M parameters and achieves +6.83%
mIoU. While our method consumes almost the same param-
eters with CorrPM, we achieve +3.7% mIoU under much
lower (−66.0G) FLOPs. When leveraging Non-Local mod-
ule (NLM) that has been utilized in CorrPM in our method,
we achieve significantly higher (+4.6%) performance re-
quiring little higher (7.9M) parameters, however, slightly
lower (16.8G) FLOPs.

IoU loss and non-local module (NLM): We adopted the
IoU loss and NLM for achieving the SOTA accuracy, be-
cause the others, e.g., SCHP and HHP, have used IoU loss
or others such as CorrPM has leveraged NLM for improving
their own accuracy. We make the ablation test, Table 2, on
performances. When combined our method with IoU loss
and NLM, we achieve a new state-of-the-art performance on
LIP (60.30%), CIHP (65.56%) and ATR (97.39%) datasets
in terms of mIoU and accuracy. As we analyzed in section
3.5 of the main paper, NLM consumes large memory foot-
prints and has high computation complexity. If not lever-
aging NLM, our method achieves −0.89%, −0.05% and
−0.47% performance in terms of mIoU and accuracy, re-
spectively, which still is the highest performance compared
to the previous methods, which verifies the superiority of
our CDGNet.
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Table 2. Effect of each component in LIP, ATR and CIHP. Single
and Multi mean the single- and multi-scale tests, respectively.

DB Metric Multi Single Single without NLM
LIP mIoU 60.30 59.93 59.04
ATR Acc. 97.39 97.34 97.29
CIHP mIoU 65.56 65.26 64.79

2. Our Novelty Compared to Human Pose-
based Method

In essence, human pose and our class distribution all
benefit human parsing. However, compared with previous
works, e.g., using human pose, we have the following nov-
elties; (1) Human pose provides the positions of manually
selected keypoints while our method considers the distri-
bution range and density of whole categories, even hair,
glasses, scarf, in horizontal and vertical directions. (2) We
make horizontal and vertical class distribution labels from
the original GTs without any human labors, but in case of
human pose or HHP, they require the human-annotated key-
points or hierarchical structures in advance. (3) Ours can be
easily generalized for any additional classes that are not a
human body and any tasks where pose information cannot
be provided properly.
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