
Supplementary Material for CamLiFlow

Haisong Liu Tao Lu Yihui Xu Jia Liu Wenjie Li Lijun Chen
State Key Laboratory for Novel Software Technology, Nanjing University, China

{liuhs, taolu, yhxu, wenjielee}@smail.nju.edu.cn, {jialiu, chenlj}@nju.edu.cn

In this supplementary material, we first present our pro-
posed strategies to improve training stability. Next, we in-
troduce the implementation details of CamLiFlow. Finally,
we provide additional qualitative examples on FlyingTh-
ings3D and KITTI.

1. CamLiFlow
1.1. Improving Training Stability

Gradient Detaching. Fusing two branches belonging to
different modalities may encounter scale-mismatched gra-
dients, making the training unstable and dominated by one
modality. To solve the issue, we propose to detach the gra-
dient from one branch to the other for each Bi-CLFM, as
shown in Fig. 4 in the main paper. In Fig. 10, we conduct
an ablation to demonstrate the effect of gradient detaching.
Without gradient detaching, the image branch dominates
the training and hurts the performance of the point branch.
By detaching the gradient from one branch to the other, we
prevent one modality from dominating so that each branch
focuses on its task.

Batch Normalization. Although the original implemen-
tation of PWC-Net does not use batch normalization (BN)
[4] in the whole network, we empirically find that integrat-
ing BN into the feature pyramid can improve training sta-
bility and speed up the convergence.

1.2. Implementation Details

Feature Pyramid. As shown in Fig. 11, we generate a
feature pyramid for the image branch and the point branch
respectively, with the top-level being the inputs. Our feature
pyramid follows the implementation of the original PWC-
Net [7] and PointPWC-Net [9] but with some modifications.
For the image branch, we replace the feedforward CNNs
with residual blocks [1] and perform batch normalization
for each convolutional layer. For the point branch, the orig-
inal PointPWC-Net builds a three-level pyramid and down-
samples the points by a factor of 4, while we build a six-
level pyramid with a downsampling factor of 2 to match the
levels of the image branch. Features from level 6 to level 2
are fused by a Bi-CLFM.

� ��� ��� ��� ��� ��� ���

������

����

����

����

����

�
�
�
��
�
�
�

��������������

�������������

� ��� ��� ��� ��� ��� ���

������

����

����

����

����

�
�
�
��
�
�
�

��������������

�������������

Figure 10. Performance on the “val” split of FlyingThings3D
with/without our gradient detaching strategy. Detaching the gra-
dient from one branch to the other can prevent one modality from
dominating, so that each branch focuses on its own task.

We start processing from the top level and perform the
coarse-to-fine estimation scheme until level 2. Hence, Cam-
LiFlow outputs optical flow at 1/4 resolution and scene flow
at 1/2 resolution. We obtain full-scale optical flow and
scene flow by convex upsampling [8] and k-NN upsampling
respectively.

Warping. For image features, warping can be directly im-
plemented with bilinear grid sampling. For point clouds,
however, grid sampling no longer works since points do not
conform to the regular grids as in images. In PointPWC-
Net, the warping layer is simply an element-wise addition
between the scene flow and the point clouds of the first
frame. However, this does not work in our case, since
PointPWC-Net warps the first frame towards the second
frame, while our image branch warps the second frame to-
wards the first frame. This mismatch can make it difficult
for training to converge.

Hence, we warp the point clouds of the second frame to-
wards the first frame using the backward scene flow, which
can be computed using inverse distance weighted interpo-
lation. Formally, let P l

1 and P l
2 be the point clouds of the

first frame and the second frame at level l respectively. We
first warp P l

1 to the target frame using the upsampled scene
flow from level l + 1:

P̃ l
1 = P l

1 +U(f l+1
3D ), (1)

where U denotes the upsampling operator based on k-NN
interpolation and f l+1

3D denotes the coarse scene flow from

1



Level 1

Image: H ×W × 3

Level 2

𝐹1:W/2 × H/2 × 16

3 × 3 Conv, 16, BN

3 × 3 Conv, 16, BN1 × 1 Conv, 16, BN

𝐹2:W/4 × H/4 × 32 Bi-CLFM

3 × 3 Conv, 32, BN

3 × 3 Conv, 32, BN1 × 1 Conv, 32, BN

𝐹3:W/8 × H/8 × 64 Bi-CLFM

3 × 3 Conv, 64, BN

3 × 3 Conv, 64, BN1 × 1 Conv, 64, BN

Level 3

𝐹4:W/16 × H/16 × 96 Bi-CLFM

3 × 3 Conv, 96, BN

3 × 3 Conv, 96, BN1 × 1 Conv, 96, BN

Level 4

𝐹5:W/32 × H/32 × 128 Bi-CLFM

3 × 3 Conv, 128, BN

3 × 3 Conv, 128, BN1 × 1 Conv, 128, BN

Level 5

𝐹6:W/64 × H/64 × 192 Bi-CLFM

𝐺1: N × 16

𝐺2: N/2 × 32

𝐺3: N/4 × 64

𝐺4: N/16 × 96

𝐺5: N/32 × 128

𝐺6: N/64 × 192

Points: N × 3

1 × 1 Conv, 16

1 × 1 Conv, 16

1 × 1 Conv, 16

1 × 1 Conv, 32

PointConv, 32, BN

1 × 1 Conv, 32

1 × 1 Conv, 64

PointConv, 64, BN

1 × 1 Conv, 64

1 × 1 Conv, 96

PointConv, 96, BN

1 × 1 Conv, 96

1 × 1 Conv, 128

PointConv, 128, BN

1 × 1 Conv, 128

1 × 1 Conv, 192

PointConv, 192, BN

3 × 3 Conv, 192, BN

3 × 3 Conv, 192, BN1 × 1 Conv, 192, BN

Level 6

Figure 11. The feature pyramid of CamLiFlow. We build a feature pyramid for the image branch and the point branch respectively, with
the top-level being the inputs. For the image branch, we extract features with residual blocks and perform batch normalization for each
convolution layer. For the point branch, we build a six-level pyramid with a downsampling factor of 2 to match the levels of the image
branch. Features from level 6 to level 2 are fused by a Bi-CLFM to pass complementary information.

level l + 1. Then, for each point in P l
2, we find its k near-

est neighbor (k-NN) in P̃ l
1. The backward flow bl3D can be

computed using inverse distance weighted interpolation:

bl3D(i) = −
�k

j=1 wijf
l+1
3D (j)

�k
j=1 wij

, (2)

where wij = 1/d(P l
2(i), P̃

l
1(j)) and d is a distance metric,

i.e., Euclidean distance. Finally, P l
2 can be warped to the

first frame using the backward flow:

P l
w = P l

2 + bl3D. (3)

Cost Volume. For the image branch, we follow PWC-Net
to construct a partial cost volume by limiting the search
range to a maximum displacement of dmax = 4 pixels
around each pixel. The resulting cost volume is organized
as a 3D array of dimensions D2 × H × W , where H and
W are the height and width of the feature map respectively

and D = 2dmax + 1 = 9. For the point branch, we follow
PointPWC-Net to construct a learnable cost volume layer.
Formally, for a point p, we form the point-to-patch cost by
searching its k-NN neighborhoods in the target point cloud.
Then the point-to-patch costs are further aggregated with
PointConv to construct a patch-to-patch cost volume. The
size of the neighborhoods is set to k = 16 for all our ex-
periments. Finally, we fuse the cost volumes of the two
branches with a Bi-CLFM.

Flow Decoder and Estimator. Our optical flow decoder
follows the original PWC-Net which employs a multi-layer
CNN with DenseNet [3] connections. The numbers of the
feature channels for each convolutional layer are 128, 128,
96, 64, and 32 respectively. Our scene flow estimator fol-
lows the original PointPWC-Net, which consists of two
PointConv layers with 128 feature channels and a two-layer
MLP with 128 and 64 feature channels respectively. Next,
the outputs of the optical flow decoder and the scene flow



In
pu

t
In

pu
t

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

0.00 - 0.19 0.19 - 0.38 0.38 - 0.75 0.75 - 1.50 1.50 - 3.00 3.00 - 6.00 6.00 - 12.00 12.00 - 24.00 24.00 - 48.00 48.00 - Inf

Figure 12. Qualitative results on the validation set of the KITTI Scene Flow dataset: (a) disparity of the first frame by GA-Net [10], (b)
warped disparity of the second frame by our point branch, (c) optical flow by our image branch, (d) background segmentation by DDRNet-
Slim [2], (e) scene flow error map without leveraging scene rigidity, (f) scene flow error map after the background rigidity refinement.

decoder are fused by a Bi-CLFM. Finally, a single-layer
perceptron (SLP) with two output channels serves as the
optical flow estimator to estimate the optical flow at level
l, and the scene flow estimator is an SLP with three output
channels to estimate the scene flow at level l. For both the
image branch and point branch, weights are shared across
all pyramid levels.

2. Experiments
2.1. Training Details

FlyingThings3D. We follow FlowNet3D [5] to lift the
disparity maps to point clouds with depth <35m. For data
augmentation, we only perform random flipping (for both
horizontal and vertical directions) since the number of the
training samples is enough. We train our model with the L2-
norm loss function and then fine-tune it on the same dataset
with the robust loss function. Fine-tuning with the robust
loss fusion gives less penalty to outliers and can improve
the threshold metrics (ACC1px and ACC.05). In Fig. 13, we
provide a visualized comparison of the error map to demon-
strate the effect.

KITTI. Using the weight pre-trained on FlyingThings3D,
we finetune our model on Driving and KITTI in sequence.
Basic data augmentation strategies including color jitter,
random horizontal flipping, random scaling, and random
cropping are applied. We use the ColorJitter from
Torchvision [6] with brightness 0.4, contrast 0.4, saturation

0.00 - 0.19 0.19 - 0.38 0.38 - 0.75 0.75 - 1.50 1.50 - 3.00 3.00 - 6.00 6.00 - 12.0 12.0 - 24.0 24.0 - 48.0 48.0 - Inf

(a) W/o Finetune (b) With Finetune

Figure 13. Visualized error map of optical flow on FlyingTh-
ings3D with/without finetuning using the robust loss function.

0.2, and hue 0.4/π. For Driving, we randomly crop the
image with a size of 768x384. For KITTI, we randomly
rescale the image by the factor in the range [1.0, 1.5].

2.2. Additional Qualitative Examples

KITTI. Since the website of KITTI only visualizes a lim-
ited number of samples on the test set, we provide additional
qualitative examples on the validation split in Fig. 12. Row
(a), (b), and (c) are respectively estimated by GA-Net [10],
our point branch, and our image branch before the rigid-
ity refinement step. Our model can estimate the foreground
motions and most background motions accurately as shown
in Row (e). It fails when objects are entirely occluded (see
the last column). By applying the rigidity refinement for
the background (the segmentation masks are estimated by
DDRNet-Slim [2] and are visualized in Row (d)), our model
can estimate both foreground and background motions ac-
curately, as shown in Row (f).



Reference Frame W/o Fusion + Pyramid Fusion + Cost Volume Fusion + Decoder Fusion Ground Truth

Figure 14. A visual ablation on our multi-stage fusion pipeline. Fusing pyramid features helps to recover the structure and boundary of
complex objects. Fusing the cost volume enables the network to capture small and fast-moving objects. Fusing the features of the flow
decoder improves the performance on complex scenes where objects overlap.

Ablations for Multi-stage Fusion Pipeline. CamLiFlow
performs feature fusion in a multi-stage manner. In the main
paper, we confirm the effectiveness of each stage by quan-
titative results in Tab. 4. Here, we provide a more detailed
qualitative analysis. In Fig. 14, the second column denotes
a variant of our model where no fusion connection exists
between the two branches. The third column only fuses the
pyramid feature, while the fourth column further fuses the
cost volume. The fifth column denotes our full model which
performs feature fusion at all three stages.

As we can see, fusing pyramid features makes the struc-
ture of the objects clearer, since point pyramid encodes ge-
ometric information which helps to recover the shape of
complex objects. Fusing the cost volume enables the model
to capture small and fast-moving objects, since the point-
based 3D cost volume searches for a dynamic range of
neighborhoods and can be complementary to the 2D cost
volume which searches for a fixed range. Fusing the fea-
tures of the flow decoder improves overall performance, es-
pecially on complex scenes where objects overlap.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition, 2015. 1
[2] Yuanduo Hong, Huihui Pan, Weichao Sun, Yisong Jia,

et al. Deep dual-resolution networks for real-time and ac-
curate semantic segmentation of road scenes. arXiv preprint
arXiv:2101.06085, 2021. 3

[3] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2

[4] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift, 2015. 1

[5] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 529–537, 2019. 3

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32:8026–
8037, 2019. 3

[7] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943,
2018. 1

[8] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 1

[9] Wenxuan Wu, Zhiyuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: A coarse-to-fine network for super-
vised and self-supervised scene flow estimation on 3d point
clouds. arXiv preprint arXiv:1911.12408, 2019. 1

[10] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and
Philip HS Torr. Ga-net: Guided aggregation net for end-to-
end stereo matching. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
185–194, 2019. 3


