
Appendix

A. An Example for the Necessity of Symmetry
Figure 7 presents an example for one-sided masks from

a clean model #18 in TrojAI round 3. Figure 7 (a) and (b)
present the victim and target classes and (c) a natural trig-
ger (i.e., a trigger naturally exists and flips victim samples
to the target label) generated by ABS, which resembles the
central symbol in the target class. Figure (d) shows the one-
sided mask from V to T , meaning that copying/mixing the
feature maps as indicated by the mask from T samples to
V samples can flip the classification results to T . Figure (e)
shows the one-sided mask from V to V +trigger. Note that
V +trigger samples are classified to T . Although in both
cases V samples are flipped to T , the two one-sided masks
have only one entry in common, suggesting that the ways
they induce the classification results are different. In con-
trast, the symmetric masks share a lot of commonality.

(a) V (b) T (c) V+trigger

(d) 1 sided mask from V to T (e) 1 sided mask from V to V+trigger

Figure 7. One sided masks for a clean model # 18 in round 3 with
victim class V =#8 and target class T =#3

B. Detecting Hidden-trigger Attack
Table 5 shows the results on hidden-trigger attack. We

use the optimal trigger size bound for ABS and 4,000
(≈63×63) for ABS+EX-RAY. Observe that our technique
can achieve 85% accuracy, surpassing ABS by 17%. Fig-
ure 8 (a) and (b) show an injected trigger and an example
image stamped with the trigger, whose target label is terrier
dog as shown in (f). Figure 8 (e) shows the generated trig-
ger by ABS for the label terrier dog of the trojaned model.
The trigger does not possess any features of the target label.
It can hence be identified by EX-RAY as a true positive. In
contrast, Figure 8 (c) and (d) show a trigger by ABS for
a benign model and its target label jeans. Observe that the
central part of the trigger resembles a pair of jeans. EX-RAY
hence can flag the model as a true negative.

C. Detecting WaNet and Input-aware Dynamic
Attacks

In this section, we evaluate EX-RAY on WaNet [45] and
input-aware dynamic [46] attacks. We utilize the CIFAR10

Table 5. EX-RAY on hidden-trigger attack

ABS ABS+EX-RAY

TP FP FN TN Acc/ROC TP FP FN TN Acc/ROC

ImageNet 12 6 5 11 0.68 15 3 2 14 0.85

(a) Trigger (b) Stamped

(c) Inverted (d) T: Jeans (e) Inverted (f) T: terrier

Figure 8. A case for hidden-trigger attack

Table 6. ABS + EX-RAY on WaNet and input-aware dynamic
attacks

TP FP FN TN Acc/ROC

Wanet 17 2 5 17 0.825
Input-aware 17 2 3 18 0.875

dataset and evaluate on 20 benign models and 40 trojaned
models (20 trojaned models for each attack). We set the
bound of the trigger size to be 12.5% of the input. The re-
sults are shown in Table 6. Observe that EX-RAY achieves
82.5% detection accuracy on WaNet and 87.5% detection
accuracy on Input-aware.

D. Comparison with other SOTA Defenses on
Complex Backdoors

We compare EX-RAY with four other state-of-the-art
(SOTA) defenses, namely, Meta-Neural Analysis [73],
DeepInspect [11], NeuronInspect [24], and TABOR [21],
on reflection and composite attacks.

We use CIFAR10 and conduct experiments on 20 benign
models, 20 trojaned models by composite attack, and 20
trojaned models by reflection attack. Meta-Neural Analysis
outputs a binary result denoting whether a model is trojaned
or not. The other three methods output a median absolute
deviation (MAD) score for each model, which is used to
distinguish benign and trojaned models. For DeepInspect,
NeuronInspect, and TABOR, we search for the best possible
bound of MAD scores for separating benign and trojaned
models. Table 7 shows the results. Rows 2-9 show the
results of Meta-Neural Analysis, DeepInspect, NeuronIn-
spect, and TABOR on composite and reflection attacks.
Rows 10-11 show the result of ABS + EX-RAY. Observe
that ABS+EX-RAY outperforms the SOTA methods, hav-



Table 7. Comparison between EX-RAY and other defenses on
composite and reflection attacks

TP FP FN TN Acc/ROC

Meta-Neural Analysis Composite 15 6 5 14 0.73
Reflection 11 8 9 12 0.58

DeepInspect Composite 20 19 0 1 0.53
Reflection 20 20 0 0 0.5

NeuronInspect Composite 4 0 16 20 0.6
Reflection 2 0 18 20 0.55

TABOR Composite 3 0 17 20 0.58
Reflection 2 0 18 20 0.55

ABS+EX-RAY
Composite 17 3 3 17 0.85
Reflection 18 4 2 16 0.85

ing at least 12% better accuracy on composite backdoors
and 27% better on reflection backdoors.

During the TrojAI competition, performers tried many
different SOTA methods [11, 16, 25, 29, 55, 57, 58, 60, 73]
(including DeepInpect, Meta-Neural Analysis and K-Arm).
Except for K-Arm [55], all other methods perform worse
than ABS + EX-RAY in rounds 2 to 4. K-Arm performs
better than ABS + EX-RAY in round 3 but worse than ABS
+ EX-RAY in rounds 2 and 4.

E. Using EX-RAY with Different Upstream
Scanners on Complex Backdoors

We apply EX-RAY to different upstream scanners, in-
cluding Neural Cleanse (NC) [66] and K-Arm [55], on de-
tecting composite and reflection backdoors on CIFAR10.
During the detection, we first use NC/K-Arm to invert trig-
gers and then apply EX-RAY to determine whether a model
is trojaned or not. The results are shown in Table 8. The first
column denotes the detection methods. The second column
shows the different attacks. Columns 3-7 show the detec-
tion results by vanilla NC and vanilla K-Arm. Columns
8-12 show the detection results by NC+EX-RAY and K-
Arm+EX-RAY. Observe that EX-RAY can improve NC’s
detection accuracy from 50-60% to 68-75%, and K-Arm’s
from 55-58% to 73-75%. We also evaluate the combina-
tions of EX-RAY and different upstream scanners on the
TrojAI datasets. We use NC and Bottom-up-Top-down
method [1] (used in the TrojAI competitions) as the up-
stream scanners. The results show that EX-RAY can con-
sistently improve NC by 25%, and Bottom-up-Top-down
by 2-15%. Please see more details in Appendix J.

F. Description of TrojAI and ImageNet
Datasets

We use TrojAI rounds 2-4 training and test datasets [3].
EX-RAY does not require training and hence we use both
training and test sets as regular datasets in our experiments.

Table 8. EX-RAY with different upstream scanners on composite
and reflection attacks

Vanilla +EX-RAY

TP FP FN TN Acc/ROC TP FP FN TN Acc/ROC

NC Composite 7 3 13 17 0.60 14 4 6 16 0.75
Reflection 5 5 15 15 0.50 10 3 10 17 0.68

K-Arm Composite 3 1 17 19 0.55 16 6 4 14 0.75
Reflection 18 15 2 5 0.58 16 7 4 13 0.73

TrojAI round 2 training set has 552 clean models and 552
trojaned models with 22 structures. Each TrojAI model has
its own unique dataset. The data are mostly synthetic traffic
signs with some street view background. A traffic sign is a
polygon of solid color with some symbol in the center. The
models are classifiers for the different kinds of signs. Tro-
jAI has two types of backdoors: polygons (i.e., static patch
triggers) and Instagram filters (i.e., dynamic and pervasive
triggers). Round 2 test set has 72 clean and 72 trojaned
models. Most performers had difficulties for round 2 due
to the prevalence of natural triggers, which are small trig-
gers that naturally exist and can flip classification results
among benign labels. IARPA hence introduced adversarial
training [43, 70] in round 3 to enlarge the distance between
classes and suppress natural triggers. Round 3 training set
has 504 clean and 504 trojaned models and the test set has
144 clean and 144 trojaned models. In round 4, triggers may
be position dependent, meaning that they only cause mis-
classification when stamped at a specific position inside the
foreground object. A model may have multiple backdoors.
The number of clean images provided is reduced from 10-
20 (in rounds 2 and 3) to 2-5. Its training set has 504 clean
and 504 trojaned models and the test set has 144 clean and
144 trojaned models. Training sets were evaluated on our
local server whereas test set evaluation was done remotely
by IARPA on their server.

We also use a number of models on ImageNet. They
have the VGG, ResNet and DenseNet structures. We use 7
trojaned models from [39] and 17 pre-trained clean models
from torchvision zoo [2].

G. Parameter Settings

EX-RAY has three hyper-parameters, α to control the
weight changes of cross-entropy loss in function (5) (in the
design section) , β to control the similarity comparison be-
tween masks in condition (6) in Section 3.2, and γ the accu-
racy threshold in cross-validation checks of masks in Sec-
tion 3.2. We use 0.1, 0.8, and 0.8, respectively, by default.
In our experiments, we use ABS and NC as the upstream
scanners. The numbers of optimization epochs are 60 for
ABS and 1000 for NC. The other settings are default unless
stated otherwise. The experiments are all done on an iden-
tical machine with a single 11GB memory NVIDIA RTX
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Figure 9. Rounds 2-4 true positive rates (TPs) and false positive
rates (FPs) versus trigger size (in pixels) by ABS

2080Ti GPU (with the lab server configuration), except for
the TrojAI test sets that are run on IARPA server with a
single 32GB memory NVIDIA V100 GPU.

H. Experiments on TrojAI and ImageNet Mod-
els

In the first experiment, we evaluate EX-RAY on TrojAI
rounds 2-4 training sets and the ImageNet models. We do
not include TrojAI test sets in this experiment as the test
sets were evaluated on an IARPA server and the results are
reflected on the leaderboard. Here we use ABS as the up-
stream scanner as it is much faster than NC.

A critical setup for scanners that produce triggers, such
as ABS and NC, is the maximum trigger size. A large value
enables detecting injected backdoors with large triggers,
while producing a lot of natural triggers and hence false
positives. Figure 9 studies how the true positives (TPs) and
false positives (FPs) change with different trigger bounds
in the vanilla ABS, on the TrojAI rounds 2-4 training sets.
Observe that both grow with the trigger size. Observe that
there is a lower FP rate in round 3 (compared to round 2),
illustrating the effect of adversarial training, although the
number is still large when the trigger size is large. Round 4
has the highest FP rate because the number of clean images
available is decreased and it is hence very easy for scanners
to find (bogus) triggers that can induce misclassification on
all the available images.

Based on the study, we use the trigger size bound 900
pixels for round 2, 1600 pixels for round 3, and 1200 pixels
for round 4 for our experiment such that the upstream scan-
ner does not miss many true positives to begin with and we
can stress test EX-RAY.
Baselines. In the experiment, we compare EX-RAY against
8 baselines. The first baseline is using L2 distance of inner
activation between V + t and T . Such a distance for a natu-
ral trigger is supposed to be smaller than that of an injected
trigger . We use unsupervised learning to report the best
separation. In the second baseline, we use half of the mod-
els to train a random forest classifier based on the inner acti-
vations and logits values to distinguish natural and injected
triggers and test it on the other half. Specifically, the classi-
fier takes the L2 distance between V + t and T , L2 distance
between T + t and T , L2 distance between V and T , logits

of V , logits of V +t and logits of T . The third baseline uses
integrated gradients (IG) [59], an attribution technique, to
find important neurons for V + t and for T and then ap-
ply the aforementioned L2 distance comparison on the 10%
most important neurons . Originally, integrated gradients
were used in model explanation to identify important pix-
els. We adapt it to work on inner layers to identify impor-
tant neurons. The next three baselines are similar to the
third except having different methods to identify important
neurons. Specifically, the fourth baseline uses Deeplift [56],
the fifth uses Occlusion [5] and the sixth uses Network Dis-
section (NE) [8]. For baselines 4-7, we use unsupervised
learning to find the best separation (of natural and injected
backdoors). We will release the settings together with our
system upon publication. EX-RAY is symmetric. To study
the necessity of symmetry, the seventh and eighth baselines
are one-sided versions of EX-RAY, that is, requiring satis-
fying either constraint (1) or (2) in the design section.

The results are shown in Table 9. The first column shows
the methods. The first method is the vanilla ABS. Columns
2-4 show the results for TrojAI round 2 models with poly-
gon backdoors. Column 2 shows the number of true pos-
itives (TPs). Note that there are 276 trojaned models with
polygon backdoors. As such the vanilla ABS having 254
TPs means it has 22 false negatives. Column 3 shows the
number of false positives (FPs) out of the 552 clean models.
Column 4 shows the overall detection accuracy (on the total
552+276=828 models). Columns 5-7 show the results for
round 2 models with Instagram filter backdoors. ABS uses
a different method for filter backdoors. Instead of reverse
engineering a pixel patch, it reverse engineers a one-layer
kernel denoting general filter transformation [39]. Hence,
we separate the evaluation of EX-RAY on the two kinds of
backdoors. Note that the accuracy is computed consider-
ing the same 552 clean models. The overall results (for all
kinds of backdoors) on the leaderboard are presented in the
main text. Columns 8-13 show the results for round 3 and
columns 14-19 for round 4. Columns 14-16 show the results
for ImageNet patch attack.

The results show that the vanilla ABS has a lot of FPs
(in order not to lose TPs) and EX-RAY can substantially re-
duce the FPs by 78-100% with the cost of increased FNs
(i.e., losing TPs) by 0-30%. The overall detection accu-
racy improvement (from vanilla ABS) is 17-41% across the
datasets. Also observe that EX-RAY consistently outper-
forms all the baselines, especially the non-EX-RAY ones.
Attribution techniques can remove a lot of natural triggers
indicated by the decrease of FPs. However, they preclude
many injected triggers (TPs) as well, leading to inferior
performance. The missing entries for NE are because it
requires an input region to decide important neurons, ren-
dering it inapplicable to filters that are pervasive. Symmet-
ric EX-RAY outperforms the one-sided versions, suggesting



Table 9. Effectiveness of EX-RAY; (T:276,C:552) means that there are 276 trojaned models and 552 clean models

TrojAI R2 TrojAI R3 TrojAI R4 ImageNet

Polygon trigger
(T:276,C:552)

Filter trigger
(T:276,C:552)

Polygon trigger
(T:252,C:504)

Filter trigger
(T:252,C:504)

Polygon trigger
(T:143,C:504)

Filter trigger
(T:361,C:504)

Patch Trigger
(T:7, C:17)

TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc

Vanilla ABS 254 218 0.710 260 293 0.626 235 208 0.702 213 334 0.528 137 355 0.442 331 376 0.531 7 7 0.708
Inner L2 188 93 0.782 153 123 0.703 210 111 0.798 133 123 0.680 73 137 0.680 208 217 0.572 7 0 1
Inner RF 192 76 0.807 196 101 0.781 159 46 0.816 153 110 0.724 133 265 0.575 330 353 0.556 7 0 1

IG 172 29 0.840 192 66 0.818 162 58 0.804 52 41 0.681 84 53 0.827 210 87 0.725 5 0 0.917
Deeplift 152 11 0.837 189 21 0.869 162 59 0.803 78 67 0.681 84 54 0.825 203 54 0.755 6 0 0.958

Occulation 173 24 0.847 207 47 0.860 164 58 0.807 78 66 0.683 85 52 0.830 251 107 0.749 7 3 0.875
NE 180 58 0.814 - - - 187 72 0.819 - - - 59 72 0.759 - - - 7 4 0.833

1-sided(V to T) 157 19 0.833 195 33 0.862 202 62 0.852 153 51 0.802 107 82 0.818 236 50 0.798 7 0 1
1-sided(T to V) 134 4 0.824 158 18 0.835 187 50 0.848 134 27 0.808 102 56 0.850 179 9 0.779 1 1 0.958

EX-RAY 198 19 0.883 204 32 0.874 200 46 0.870 149 39 0.812 105 53 0.859 242 46 0.809 7 0 1

the need of symmetry.
Runtime. EX-RAY’s time complexity is Ω(n) with n the
number of triggers the upstream technique generates. Our
upstream ABS uses neuron stimulation analysis to select
three most likely target labels for each (victim) label for
trigger inversion. It also filters out large sized triggers. In
TrojAI, the number of classes per model varies from 15 to
45. On average, EX-RAY takes 12s to process a trigger, 95s
to process a model. ABS takes 337s to process a model,
producing 8.5 triggers on average.

I. Effects of Hyperparameters

We study EX-RAY performance with various hyperpa-
rameter settings, including the different layer to which
EX-RAY is applied, different trigger size settings (in the
upstream scanner) and different SSIM score bounds (in fil-
ter backdoor scanning to ensure the generated kernel does
not over-transform an input), and the α, β, and γ settings
of EX-RAY. Table 11 shows the results for layer selec-
tion. The row “Middle” means that we apply EX-RAY at the
layer in the middle of a model. The rows “Last” and“2nd
last” show the results at the last and the second-last con-
volutional layers, respectively. Observe that layer selection
may affect performance to some extent and the second to the
last layer has the best performance. Table 10 shows the re-
sults with and without the additional validation checks. Ob-
serve that removing the additional validation check results
in 0.7% to 3% decrease in detection accuracy. Tables 12
shows that a large trigger size degrades EX-RAY’s perfor-
mance but EX-RAY is stable in 900 to 1200. Table 13 shows
that the SSIM score bound has small effect on performance
in 0.7-0.9. Note that an SSIM score smaller than 0.7 means
the transformed image is quite different (in human eyes).
Figures 10, 11, and 12 show the performance variations
with α, β, and γ, respectively. The experiments are on the
mixture of trojaned models with polygon triggers and the
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Figure 10. Accuracy changes with α on TrojAI R2
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Figure 11. Accuracy changes with β on TrojAI R2

clean models from TrojAI round 2. For β and γ, we sample
from 0.7 to 0.95 and for α we sample from 0.1 to 2.4. Ob-
serve that changing α and γ does not have much impact on
the overall accuracy. When we change β from 0.7 to 0.95,
the overall accuracy is still consistently higher than 0.83.
These results show the stability of EX-RAY.

J. Using EX-RAY with Different Upstream
Scanners on TrojAI dataset

In this experiment, we use EX-RAY with different up-
stream scanners, including Neural Cleanse (NC) [66] and
the Bottom-up-Top-down method by the SRI team in the
TrojAI competition [1]. The latter has two sub-components,
trigger generation and a classifier that makes use of features
collected from the trigger generation process. We created
two scanners out of their solution. In the first one, we ap-



Table 10. EX-RAY w. and w.o. additional check; (T:276,C:552) means that there are 276 trojaned models and 552 clean models

TrojAI R2 TrojAI R3 TrojAI R4

Polygon Trigger
(T:276,C:552)

Filter Trigger
(T:276,C:552)

Polygon Trigger
(T:252,C:504)

Filter Trigger
(T:252,C:504)

Polygon trigger
(T:143,C:504)

Filter trigger
(T:361,C:504)

TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc

W. additional check 198 19 0.883 204 32 0.874 200 46 0.870 149 39 0.812 105 53 0.859 242 46 0.809
W.o. additional check 206 33 0.876 216 71 0.844 207 71 0.843 158 62 0.793 110 77 0.829 275 93 0.793

Table 11. EX-RAY with different layer; (T:276,C:552) means that there are 276 trojaned models and 552 clean models

TrojAI R2 TrojAI R3 TrojAI R4

Polygon Trigger
(T:276,C:552)

Filter Trigger
(T:276,C:552)

Polygon Trigger
(T:252,C:504)

Filter Trigger
(T:252,C:504)

Polygon trigger
(T:143,C:504)

Filter trigger
(T:361,C:504)

TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc TP FP Acc

Middle 215 54 0.861 220 97 0.815 212 55 0.874 153 58 0.792 102 75 0.821 257 77 0.791
Second Last 198 19 0.883 204 32 0.874 200 46 0.870 149 39 0.812 105 53 0.859 242 46 0.809

Last 141 6 0.83 171 16 0.854 193 55 0.849 141 27 0.817 84 37 0.852 196 37 0.766
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Figure 12. Accuracy changes with γ on TrojAI R2

Table 12. EX-RAY with different trigger sizes; (T:276, C:552)
means there are 276 trojaned models and 552 clean models

TrojAI R2
(T:276,C:552)

TrojAI R3
(T:252,C:504)

TrojAI R4
(T:143,C:504)

TP FP Acc TP FP Acc TP FP Acc

900 198 19 0.883 157 19 0.849 95 58 0.836
1200 203 30 0.876 175 39 0.847 105 53 0.859
1600 210 46 0.864 200 46 0.870 108 77 0.827

Table 13. EX-RAY with different SSIM scores; (T:276, C:552)
means there are 276 trojaned models and 552 clean models

SSIM
Score

TrojAI R2
(T:276,C:552)

TrojAI R3
(T:252,C:504)

TrojAI R4
(T:361,C:504)

TP FP Acc TP FP Acc TP FP Acc

0.9 145 4 0.837 115 9 0.807 234 47 0.799
0.8 160 13 0.844 149 39 0.812 242 46 0.809
0.7 204 32 0.874 178 90 0.783 175 13 0.770

ply EX-RAY on top of their final classification results (i.e.,
using EX-RAY as a refinement). We call it SRI-CLS. In
the second one, we apply EX-RAY right after their trigger
generation. We have to replace their classifier with the sim-

pler unsupervised learning (i.e., finding the best separation)
as adding EX-RAY changes the features and nullifies their
original classifier. We call it SRI-RE. We use the round 2
clean models and models with polygon backdoors to con-
duct the study as NC does not handle Instagram filter trig-
gers. For SRI-CLS, the training was on 800 randomly se-
lected models and testing was on the remaining 146 trojaned
models and 158 clean models. The other scanners do not re-
quire training. The results are shown in Table 14. The T and
C columns stand for the number of trojaned and clean mod-
els used in testing, respectively. Observe that the vanilla NC
identifies 180 TPs and 332 FPs with the accuracy of 44.7%.
With EX-RAY, the FPs are reduced to 73 (81.1% reduction)
and the TPs become 127 (29.4% degradation). The overall
accuracy improves from 44.7% to 70.8%. The improvement
for SRI-RE is from 53.6% to 68.5%. The improvement for
SRI-CLS is relative less significant. That is because 0.882
accuracy is already very close to the best performance for
this round. The results show that EX-RAY can consistently
improve upstream scanner performance. Note that the value
of EX-RAY lies in suppressing false warnings. It offers little
help if the upstream scanner has substantial false negatives.
In this case, users may want to tune the upstream scanner
to have minimal false negatives and then rely on the down-
stream EX-RAY to prune the false positives like we did in
the ABS+EX-RAY pipeline.

K. Mask and Differential Features
In this experiment, we aim to demonstrate that the masks

computed by EX-RAY indeed capture the feature differ-
ences. Specifically, we want to show that 1) the mask be-
tween V + t and V covers the trigger features and does
not overlap with the natural differences between V and T



for a trojaned model and 2) the mask between V + t and
V captures the natural differences between V and T for a
clean model. We use a model interpretation technique sim-
ilar to [8] to project the large activation values of feature
maps (i.e., neurons) in the mask between V + t and V back
to the input space and observe which input areas are high-
lighted. Figure 13 shows a sample result. Figures (a)-(b)
correspond to a trojaned model #7 in TrojAI round 2. Figure
(a) shows a victim sample with the trigger, which is a purple
polygon. The area in light-green shows the input area corre-
sponding to the activated neurons in the mask. Observe that
the two align nicely, indicating the mask captures the trig-
ger features. In contrast, figure (b) shows a target sample
and also the input area corresponding to activated neurons
in the mask, if any. Observe that those neurons do not have
large activations. Figures (c)-(d) show the results for a clean
model #123. Figure (c) shows that the (natural) trigger is to
the right and below the central symbol of the victim sam-
ple. Observe that while there is a highlighted area in the
V + t sample (c) covering the trigger, there is also a high-
lighted area in the T sample (d) covering the target features,
demonstrating that the mask between V + t and V indeed
captures T ’s features. Figure 14 plots the maximum acti-
vation values for all the neurons in the mask, with (a)-(c)
for model #7 and (d)-(f) for model #123. For example, a
data point in (a) shows the average maximum activation of
a neuron in the mask for all V + t samples (y axis), versus
its average maximum activation for all V samples (x axis).
From (a)-(c), we can observe that these neurons are substan-
tially activated when t is present but never for clean V or T
samples. In contrast, (d)-(f) show that the neurons in the
mask are activated when either t is present or V /T samples
are provided. We studied a few other models. Their results
are similar and hence omitted.

L. Two Additional Adaptive Attacks

EX-RAY is not a stand-alone defense technique and sup-
posed to be part of an end-to-end scanning pipeline. We
devise another the second attack that forces the internal ac-
tivations of victim class inputs embedding the trigger to re-
semble the activations of the target class inputs such that
EX-RAY cannot distinguish the two. In particular, we train
a Network in Network model on CIFAR10 with an 8×8
patch trigger. In order to force the activations of images
stamped with the trigger to resemble those of target class

Table 14. EX-RAY with different upstream scanners

Vanilla +EX-RAY

TP T FP C Acc TP T FP C Acc Acc Inc

NC 180 252 332 552 0.483 127 252 73 552 0.732 0.249
SRI-RE 164 252 272 552 0.536 112 252 97 552 0.685 0.149

SRI-CLS 120 146 17 158 0.858 119 146 9 158 0.882 0.024

(a) Victim +
injected trigger (b) Target

(c) Victim+
trigger by ABS (d) Target

Figure 13. Trojaned model #7 from TrojAI round 2 in (a)-(b) and
clean model #123 in (c)-(d). In (a), the trigger is stamped at the
right-bottom corner with the light-green area corresponding to the
neurons in the mask by an interpretation technique; (b) shows the
neurons in the mask do not have large activations at all for a target
sample; (c) and (d) show that the neurons in the mask capture fea-
tures in both the trigger and the target.

images, we design an adaptive loss to minimize the dif-
ferences between the two. In particular, we measure the
differences of the means and standard deviations of fea-
ture maps. During training, we add the adaptive loss to
the normal cross-entropy loss. The effect of adaptive loss
is controlled by a weight value, which essentially controls
the strength of attack as well. Besides the adaptively tro-
janed model, we also train 20 clean models on CIFAR10 to
see if ABS+EX-RAY can distinguish the trojaned and clean
models. The results are shown in Table 15. The first row
shows the adaptive loss weight. A larger weight value in-
dicates stronger attack. The second row shows the trojaned
model’s accuracy on clean images, including both the over-
all accuracy and the victim label accuracy. The third row
shows the attack success rate of the trojaned model. The
fourth row shows the FP rate. The fifth row shows the TP
rate. Observe while ABS+EX-RAY does not miss trojaned
models, its FP rate grows with the strength of attack. When
the weight value is 1000, the FP rate of ABS+EX-RAY be-
comes 0.65 while its TP rate remains 1, meaning effective-
ness degradation. However at this setting, the model accu-
racy has degraded so much that such model is unlikely used
in practice.

In the third adaptive attack, we first generate a trigger
similar to a third class while having similar feature-level
representations to the target class. We generate such trig-
gers by optimizing two losses. The first is the cross entropy
loss between the model output on images stamped with the
trigger and the third class label (similar to adversarial noise
for a third class). The second loss is the mean squared er-
ror loss between the inner activation of the images stamped
with the trigger and the inner activation of the target class
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Figure 14. Average maximum activation values for neurons in the computed masks for a trojaned model #7 in (a)-(c), and for a clean model
#123 in (d)-(f).

Table 15. The second adaptive attack

Weight of adaptive loss 1 10 100 200 400 600 800 1000 10000

Acc (model/label) 0.89/0.73 0.88/0.73 0.87/0.7 0.87/0.7 0.86/0.69 0.845/0.66 0.84/0.66 0.82/0.64 0.1
ASR 0.99 0.99 0.99 0.98 0.94 0.98 0.96 0.97 -

FP/ # of clean models 0 0.2 0.2 0.2 0.35 0.45 0.6 0.65 -
TP/ # of clean models 1 1 1 1 1 1 1 1 -

images (similar to adversarial feature-level attack). After
generating the triggers, we use data poisoning to trojan the
models. We do the experiment on CIFAR10. We choose
label 0 as the target label and label 8 as the third label. We
choose conv7 in NiN models as the feature layer and opti-
mize neuron activations in this layer. We find that we need
to enlarge the trigger size to have similar inner activations
as the target label images. We generate triggers with 4 dif-
ferent sizes, 120, 140, 160, 200. The triggers are shown in
Figure 15. We train 20 benign NiN models and 20 feature-
level adaptive attack NiN models for each trigger size.

Table 16 shows the results of EX-RAY. Row 1 shows the
different trigger sizes. Row 2 shows the mean squared acti-
vation differences. Observe that with the increase of trigger
size, we can optimize the difference to a smaller value. A
trigger with a small feature difference may be difficult to
be detected. Rows 3 and 4 show the false positive and true
positive rates. Observe that EX-RAY has 75% true posi-
tive rate when the trigger is 160 and 65% true positive rate
when trigger size is 200. When the trigger size is 200, the
trigger already covers a large part of the image. The attack
becomes less meaningful.

Table 16. The third adaptive attack

Trigger size 120 140 160 200

Mean squared feature difference 0.153 0.116 0.034 0.009
FP/ # of clean models 0.1 0.1 0.1 0.1
TP/ # of clean models 1 0.8 0.75 0.65

(a) 120 (b) 140 (c) 160 (d) 200

Figure 15. Triggers in the third adaptive attack

M. Fixing Models with Injected and Natural
Backdoors

In this experiment, we try to fix 5 benign models and
5 trojaned models on CIFAR10. Fixing a benign model
means enlarging class distances to make it less vulnera-
ble to (small) natural backdoors. The trojaned models are
trojaned by label-specific data poisoning. Here we use un-
learning [66] which stamps triggers generated by scanning
methods on images of victim label to finetune the model
and forces the model to unlearn the correlations between
the triggers and the target label. The process is iterative,
bounded by the level of model accuracy degradation. The
level of repair achieved is measured by the trigger sizes of
the fixed model. Larger triggers indicate the corresponding
backdoors become more difficult to exploit. The trigger size
increase rate suggests the difficulty level of repair.

Table 17 shows the average accuracy and average reverse
engineered trigger size before and after fixing the models.
All models have the same repair budget. We can see that
natural triggers have a larger accuracy decrease. Natural
trigger size only increases by 34.4 whereas injected trigger
size increases by 78.

We show the trigger size for each label pair for an tro-
janed model in Figure 16 and for an benign model in Fig-
ure 17. Figure 16 (a) shows the trigger size between each



Table 17. Average trigger size change before and after unlearning

Natural Trigger Injected Trigger

Before After Before After

Avg Acc 88.7% 85.9% 86.4% 85.4%
Avg Trigger Size 25.8 60.2 19 97

pair of labels. The columns denote the victim label and the
rows denote the the target label. For example, the gray cell
in Figure 16 (a) shows the trigger size to flip class 1 to class
0. Figure 16 (b) follows the same format and shows the re-
sult for a trojaned model after unlearning. In the trojaned
model the injected trigger flips class 1 to class 0. Before
unlearning, class 1 and class 0 have the smallest trigger size
21. Unlearning increases the trigger size between the two
to 106, which is above the average trigger size between any
pairs. Intuitively, one can consider the backdoor is fixed. In
the benign model, the natural trigger flips class 3 to class 5.
As shown in Figure 17, unlearning increases the trigger size
from 24 to 59 and 59 is still one of the smallest trigger size
among all label pairs for the fixed model. It demonstrates
that natural backdoors are inevitable and difficult to fix. AI
model users can use EX-RAY to find injected backdoors and
speed up fixing process by prioritizing fixing injected back-
doors first.

Note that model repair is not the focus of the paper and
trigger size may not be a good metric to evaluate repair suc-
cess for the more complex semantic backdoors. The experi-
ment is to provide initial insights. A thorough model repair
solution belongs to our future work.



(a) Before unlearning

0 1 2 3 4 5 6 7 8 9
0 - 48 34 75 42 52 62 46 48 52
1 21 - 74 91 88 96 72 80 81 45
2 32 54 - 66 39 57 54 61 78 60
3 34 53 35 - 42 27 46 50 72 47
4 29 45 29 49 - 36 46 48 63 48
5 40 70 35 46 43 - 53 49 81 56
6 29 48 23 41 44 61 - 66 70 59
7 40 77 55 78 40 52 81 - 82 60
8 21 44 42 75 50 59 60 65 - 47
9 29 62 78 85 69 70 73 62 73 -

(b) Before unlearning

0 1 2 3 4 5 6 7 8 9
0 - 84 56 103 77 96 82 96 56 78
1 106 - 132 162 150 140 113 134 124 70
2 92 111 - 88 79 79 62 99 109 106
3 105 92 66 - 86 60 58 82 124 86
4 96 92 55 81 - 72 53 77 99 95
5 119 100 64 70 91 - 58 101 136 90
6 107 97 86 88 99 93 - 113 113 97
7 94 101 92 124 87 87 81 - 126 100
8 50 72 68 104 98 106 81 101 - 79
9 104 87 129 119 117 115 110 108 123 -

Figure 16. Injected trigger distance matrix before and after unlearning

0 1 2 3 4 5 6 7 8 9
0 - 43 44 47 38 42 67 68 37 48
1 62 - 89 88 79 78 70 85 76 47
2 53 58 - 37 35 42 51 71 72 62
3 62 66 40 - 40 24 48 59 72 56
4 61 57 38 48 - 31 52 52 85 64
5 69 66 43 33 46 - 51 61 73 57
6 66 55 32 35 44 38 - 80 87 62
7 74 77 67 61 38 39 74 - 92 68
8 29 44 55 61 48 51 62 65 - 46
9 79 57 84 72 67 67 83 76 72 -

0 1 2 3 4 5 6 7 8 9
0 - 79 56 89 63 90 65 99 59 76
1 120 - 134 114 123 154 77 119 122 48
2 95 101 - 75 58 74 59 82 121 82
3 104 98 57 - 58 59 40 90 124 80
4 104 100 60 88 - 79 50 73 117 79
5 95 91 58 84 76 - 52 77 131 86
6 114 115 77 129 102 89 - 131 137 93
7 104 120 110 103 68 92 66 - 129 78
8 36 61 74 80 66 112 66 86 - 70
9 128 109 117 103 112 120 73 124 105 -

Figure 17. Natural trigger distance matrix before and after unlearning


