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Appendix A. Implementation details
We employ ResNet-50 [1] (VGG-16 [2]) pre-trained on

ImageNet as our backbone networks. For ResNet-50, the
dilation convolution (with stride size = 1) is introduced to
ensure that the feature receptive fields of layer2, layer3,
and layer4 preserve the same spatial resolution. The back-
bone weights are fixed except for layer4, which is re-
quired to learn more robust activation maps. The model is
trained with a SGD optimizer for 200 and 50 epochs on the
PASCAL-5i and the COCO-20i benchmarks, respectively .
The learning rates are initialized as 0.005 and 0.002 with
a poly learning rate schedule on PASCAL-5i and COCO-
20i, respectively. The batch size is set as 8 on PASCAL-
5i and 32 on COCO-20i. Our entire network is trained
with the same learning rate during each epoch, except for
layer4 of the backbone network, whose parameters starts
back-propagation after training for multiple epochs to en-
sure a lower learning rate for fine-tuning. Data augmen-
tation strategies in [3] are adopted in the training stage,
and all images are cropped to 473 × 473 patches for two
benchmarks. Besides, we leverage multi-scale testing strat-
egy used in the most few-shot semantic segmentation meth-
ods for the model evaluation, and the original Groudtruth of
the evaluated query image without any resize operations is
adopted for the metric calculation. In addition, the window
sizes in SAM are set to {5× 1, 3× 3, 1× 5}, and the kernel
sizes in DCM are set as 5 × 1, 5 × 5, and 1 × 5, respec-
tively. We implement our model with PyTorch 1.7.0 and
conduct all the experiments with Nvidia Tesla V100 GPUs
and CUDA11.3.

Appendix B. Additional results and analyses
Kernel Generation Variants. The dynamic convolu-

tion module (DCM), in which we generate dynamic kernels
from the support foreground and employ convolution over
the query feature, is an essential component in our proposed
method. Therefore, here we presents two kernel generation
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Method 1-shot mIoU
Fold0 Fold1 Fold2 Fold3 Mean FB-IoU

5/25 65.9 70.6 66.9 60.5 66.0 77.0
5→25 65.7 71.6 69.1 60.6 66.7 78.0

Table A1. Ablation studies for the kernel generation variants.

Method 1-shot mIoU
Fold0 Fold1 Fold2 Fold3 Mean

PANet (Box) - - - - 45.1
CANet (Box) - - - - 52.0
Ours (Box) 59.8 70.5 63.2 55.5 62.3
Ours (Pixel) 65.7 71.6 69.1 60.6 66.7

Table A2. Comparison with the existing methods under the bound-
ing box supervision under 1-shot setting.

Method Backbone PASCAL-5i COCO-20i

MIoU FB-IoU MIoU FB-IoU
w/o MS VGG16 61.3 72.7 39.2 61.9
w MS VGG16 61.7 73.7 39.5 62.5
w/o MS ResNet50 65.7 77.4 41.5 62.7
w MS ResNet50 66.7 78.0 43.0 63.2

Table A3. Effectiveness of multi-scale testing under the 1-shot
setting on the PASCAL-5i and the COCO-20i benchmarks.

variants: (i) we generate both asymmetric and symmetric
kernel weights in parallel (ii) we first generate asymmet-
ric kernel weights, and the asymmetric kernel weights are
further used to generate symmetric kernel weights. With a
kernel size 5, we term these two variants as 5/25 (in paral-
lel) and 5 → 25 (serial). As seen in Table A1, these two
variants achieve similar performance (66.0 vs 66.7), which
demonstrates the robustness of the DCM.

Experiments with Bounding Box Annotations. Fol-
lowing PANet [4] and CANet [5], we evaluate our model
with weakly-supervised annotation (i.e, bounding box in-
stead of pixel-wise annotation) on the support set. As shown
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Methods 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

CANet (CVPR19) [5] 53.5 65.9 51.3 51.9 55.4 66.2 55.5 67.8 51.9 53.2 57.1 69.3
CANet (CVPR19)+DCM 64.7 66.8 51.8 51.9 58.8 69.3 65.3 67.2 52.7 52.9 59.5 70.1
PFENet (TPAMI’20) [3] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9

PFENet (TPAMI’20)+DCM 62.2 69.6 59.2 58.0 62.3 73.5 63.1 70.0 60.0 58.5 62.9 73.6

Table A4. Generalization ability of proposed DCM under both 1-shot and 5-shot settings.

Methods Backbone 1-shot 5-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

Original Groudtruth [5] VGG16 58.9 69.1 63.2 55.7 61.7 73.7 63.4 70.7 68.1 59.0 65.3 77.2
Non-original Groudtruth VGG16 59.3 69.5 63.3 55.8 62.0 73.8 64.0 71.2 68.4 59.0 65.7 77.2
Original Groudtruth [3] ResNet50 65.7 71.6 69.1 60.6 66.7 78.0 70.0 73.2 70.9 65.5 69.9 80.7
Non-original Groudtruth ResNet50 65.6 71.8 69.2 60.5 66.8 78.0 70.0 73.2 70.9 65.5 69.9 80.6

Table A5. Comparison with Original Groudtruth and Non-original Groudtruth

in Table A2, our method with the bounding box annotation
achieves slightly inferior performance than that with ex-
pensive pixel-wise annotation. In addition, using bounding
box annotation as supervision, our method also significantly
outperforms both PANet and CANet. This experiment indi-
cates the potential of our method in the segmentation task
with weak supervision.

Multi-Scale Testing. As a post-processing method,
multi-scale testing [6] is widely adopted in many seman-
tic segmentation tasks. Many few-shot semantic segmenta-
tion methods as well as our proposed method DPCN also
use this strategy to improve segmentation performance. We
present our results with / without multi-scale testing (termed
as w MS and w/o MS, respectively) in Table A3. The scales
in our experiments are set as 473 and 641. We can see that
(i) our model without the multi-scale testing also achieves
state-of-the-art results using VGG16 and ResNet50 back-
bones, which further demonstrates the effectiveness of our
proposed method (ii) multi-scale testing brings 1% mIou
improvement for our model with ResNet50 backbone, while
a slight improvement when we use VGG16 as the backbone
network.

Generalization Ability of DCM. The dynamic convolu-
tion module (DCM) can be used as a plug-and-play module
to improve current prototype-based few-shot segmentation
methods. We merge DCM into CANet and PFENet, and
present the corresponding results under both 1-shot and 5-
shot settings in Table A4. DCM further improve the perfor-
mance of CANet and PFENet under both 1-shot and 5-shot
settings, which shows the effectiveness of the DCM.

Evaluation using Original Groundtruth. As in
PFENet [3], we also evaluate our model with original
groundtruth of the query image and the non-original one
resized to the same size as training image size (473× 473).
We can find from Table A5 that our proposed model obtains
similar performance with the original or non-original query

Figure A1. Training and Validation curves (x-axis: epochs, y-axis:
1-shot mIoU) on PASCAL-5i benchmark.
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Figure A2. Ablation study for Support loss coefficient λ on fold0
and fold1 of PASCAL-5i benchmark.

groundtruth.
Training and validation performance. We present the

performance (mIoU) changing process as the training epoch
increases in Fig. A1. As can be seen, the mIoU of the train-
ing process are much better than that of the validation in
each fold. Besides, the validation mIoU in fold0 and fold1
are relatively stable, while the validation mIoU in fold2 and
fold3 fluctuate as the training process goes on.

Support Loss Coefficient λ. During the model train-
ing, we use the predicted query mask as a pseudo mask for
predicting the support mask, which requires a support loss



Lq→s
seg for supervision. For the support loss coefficient λ, we

take its value from {0, 0.1, 0.5, 1, 2} to study its influence
on our model. The performance of the fold0 and fold1 as
well as their mean on the PASCAL-5i benchmark are used
for illustration. As shown in Fig. A2, our model achieves
best results when the support loss coefficient is set as 1. And
λ is set as 1 in all our experiments.

Appendix C. Additional qualitative results
In this section, we present more qualitative results of

our proposed DPCN and its baseline to demonstrate its
few-shot segmentation performance. Appearance and scale
variations (more obvious in the COCO-20i benchmark) are
the innate difficulty of the few-shot semantic segmentation
task. Therefore, we first show some examples sampled from
COCO-20i benchmark with large object appearance and
scale variations in the Fig. A3 and Fig. A4, respectively.
As can be seen, our model DPCN exhibits great superiority
in alleviating appearance and scale variations. Besides, we
also sample some examples from PASCAL-5i benchmark,
and the qualitative results are presented in Fig. A5. Fur-
thermore, DPCN occasionally predicts more accurate seg-
mentation than human-annotated ground-truth (Fig. A6),
which further demonstrates the effectiveness of our method.
Finally, we give some visualization of the support activa-
tion maps, initial pseudo mask as well as the refined pseudo
mask in Fig. A7. We can see that the support activation
maps can capture complementary object details in the query
image, the initial pseudo mask gives rough pixel-wise loca-
tion estimation of object, while the refined pseudo mask can

estimate more accurate object location in the query image.
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Figure A3. Qualitative results of our method DPCN and baseline model on COCO-20i benchmark with large object appearance varia-
tions. Zoom in for details.Scale Variation
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Figure A4. Qualitative results of our method DPCN and baseline model on COCO-20i benchmark with large object scale variations.
Zoom in for details.
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Figure A5. Qualitative results of our method DPCN and baseline model on PASCAL-5i benchmark. Zoom in for details.
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Better than GT

Figure A6. Our proposed DPCN occasionally predicts more accurate segmentation masks than human-annotated ground-truths. Examples
are sampled from both PASCAL-5i and COCO-20i. Zoom in for details.
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Figure A7. Visualization of the support activation maps {M i
act}3i=1 and the initial pseudo mask M0

pse in the support activation module
(SAM), as well as the refined pseudo mask Mr

psein the feature filtering module (FFM). Zoom in for details.


