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This supplementary material comprises:

• Examples of geometric augmentations on objects from
different datasets (Section 1);

• Additional ablation studies on Office-Home and
Digits-DG (Section 2): Results show that the sensi-
tivity of different dataset to the augmentation spaces
are different, a threshold value near 0.5 is expected to
induce a better average performance;

• Additional feature visualizations on Office-Home and
Digits-DG (Section 3): By adding geometric and tex-
tural augmentation, object clusters become denser and
easier to separate;

• Discussions and comparisons between the effective-
ness of distribution based augmentation and set/mini-
batch based augmentation (Section 4): Results show
that representation diversity plays a key role in model
robustness improvement. Compared with set/mini-
batch based augmentation, leveraging distributions
lead to a general improvement in performance due to
the significantly improved representation diversity.

1. Geometric Augmentations on Different Ob-
jects

We present some geometric augmentation effects on ob-
jects from different datasets, as shown in Figure 1. It can be
seen that different objects have different deformation types
which are suitable for them.

2. Additional Experimental Results
In the paper, our ablation study (Section 5.3) on the in-

fluence of different probability thresholds for augmentation
on classification (Figure 4 in the main paper) and the vi-
sualization of the feature statics are on PACS [2] dataset.
Here we show some more results on Office-Home [6] and
Digits-DG [7].

In Figure 2 and Figure 4, we show the influence of differ-
ent probability thresholds on Office-Home and Digits-DG,

respectively. Basically, the effectivenesses of geometry and
texture augmentations vary between two datasets. For each
dataset, it can be seen that in terms of performance on each
target domain, the best threshold varies across target do-
mains and augmentation spaces. This is consistent with our
conclusions in the paper.

(a) (b) (c) (d) (e)

Figure 1. Examples of geometric augmentations on objects from
different datasets. The first two are from PACS [2]. The mid-
dle two are from Office-Home [6]. The last two are from Digits-
DG [7]. (a) Original images. (b) – (e) Various geometric deforma-
tion effects.
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Figure 2. Influence of different probability thresholds for augmen-
tation on classification (left for textural augmentation and right for
geometric augmentation). Results shown are for multi-source do-
main test on Office-Home [6] with ResNet-18 backbone. Statistics
on domains with different styles are colored differently.
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Figure 3. T-SNE visualization of the feature statistics using dif-
ferent augmentations on Office-Home [6]. Each color represents a
different class. Legend labels are not included due to over many
classes (65 in total). (a) Basic training without any augmentation.
(b) Add only geometric augmentation. (c) Add only textural aug-
mentation. (d) Using both geometric and textural augmentation.

3. Visualizations of Feature Statistics

To better illustrate the effect of each augmentation space
on the model, we also visualize the feature statistics on
Office-Home and Digits-DG using the T-SNE method, as
shown in Figure 3 and Figure 5. Similar to the results
on PACS (Figure 5 in the paper), after employing geomet-
ric and texture augmentations during the training, bound-
aries among different class objects become cleaner while
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Figure 4. Influence of different probability thresholds for augmen-
tation on classification (left for textural augmentation and right for
geometric augmentation). Results shown are for multi-source do-
main test on Digits-DG [7] with the same backbone as [7]. Statis-
tics on domains with different styles are colored differently.
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Figure 5. T-SNE visualization of the feature statistics using dif-
ferent augmentations on Digits-DG [7]. (a) Basic training without
any augmentation. (b) Add only geometric augmentation. (c) Add
only textural augmentation. (d) Using both geometric and textural
augmentation.

the same class object cluster closer together.

4. Distribution based Augmentation versus
Set/mini-batch based Augmentation

As described in the paper (Section 4), in terms of using
style transfer methods for data augmentation, unlike most
approaches [1,3,5,8] that sample an image from the training
data or a mini-batch to transfer the texture of another one,
we leverage constructed distributions instead of finite sets



Table 1. Comparisons between distribution based augmentation and set/mini-batch based augmentation. Results are shown for multi-source
domain test accuracy (%) on PACS with ResNet-18 backbone. Each column indicates the target domain. OursT1 refers to the set-based
version of our texture augmentation (using samplings from V (Equation 10)). OursT refers to the distribution-based texture augmentation
as we used in the paper (using samplings from NV (µ,Σ) (Equations 11–12). OursG1 refers to the set-based version of our geometric
augmentation (using samplings from Wk (Equation 5)). OursG refers to the distribution-based geometric augmentation as we used in the
paper (using samplings from NWk (µk,Σk) (Equations 6–7)). Compared with set/mini-batch based augmentation, leveraging distributions
lead to a general improvement in performance due to the significantly improved representation diversity.

Augmentation Types Methods Art Cartoon Photo Sketch Average

Texture
Augmentation

Set/Mini-batch based
SagNet [5] 83.58 77.66 95.47 76.30 83.25

MixStyle [8] 84.10 78.80 96.10 75.90 83.70
OursT1 85.84 78.71 95.63 80.20 85.10

Distribution based OursT 86.34 80.12 96.38 81.42 86.07

Geometric
Augmentation

Set based OursG1 81.35 77.58 96.11 74.03 82.27

Distribution based OursG 82.74 78.22 95.96 75.26 83.05

to augment the training image. The greatest benefit of such
a strategy is to boost the geometric and textural style repre-
sentations. From the experimental results in the paper (Ta-
bles 1–3), we can see that in terms of the individual perfor-
mance of texture style augmentation, our distribution-based
texture augmentation exceeds the set/mini-batch based tex-
ture augmentation approaches [5, 8]. And this is consistent
with the conclusion in [4]: Representation diversity plays a
key role in style transfer based model robustness improve-
ment.

To further verify the effectiveness of the representation
diversity. We compare the set based versions (OursG1,
OursT1) of our augmentation with others, as shown in Ta-
ble 1. OursG1: Set based geometric augmentation, using
samplings from Wk (Equation 5) instead of NWk

(µk,Σk)
(Equations 6–7). OursT1: Set based texture augmenta-
tion, using samplings from V (Equation 10) instead of
NV (µ,Σ) (Equations 11–12). We can see that compared
with set/mini-batch based augmentation, leveraging distri-
butions lead to a general improvement in the results.
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