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Figure 1. Interactiveness AP for different object categories of our model, QPIC [11], and CDN [12].
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Figure 2. Some typical detection results on HICO-DET [2]. Given an object (yellow), our model efficiently pairs the object with the
interactive human (cerulean) and filters out the non-interactive human instances (red). Under both circumstances (non-interactive pairs in
majority on the left, and interactive pairs in majority on the right), we achieve satisfactory results.
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1. Generalization of Interactiveness Bi-modal
Prior

A potential issue is the generalization of our proposed
bi-modal prior. We reemphasize that the bimodal prior is
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universal with good generalization in the context of HOI
in two aspects. First, the bimodal prior is fundamentally
rooted in HOI. The very compositional nature of human
and object in HOI makes it susceptible to a severely im-
balanced distribution as revealed by Zipf’s Law. As shown
in Table 1, widely used natural image HOI datasets [2–5]
all hold the prior Second, we claim that the object-centric

Dataset #inter
#no−inter � 1 #inter

#no−inter ≈ 1 #inter
#no−inter � 1

HICO-DET [2] 79.1% 7.3% 13.6%
V-COCO [4] 76.0% 7.9% 16.1%

Ambiguous-HOI [5] 80.1% 6.2% 13.7%
AVA [3] 73.2% 8.4% 18.4%

Table 1. Interactive ratio of different datasets.
bimodal prior exploited in our paper is one subclass of the
prior, since the widely-used benchmarks HICO-DET and V-
COCO both have this property. Besides the object-centric
prior that is more suitable in multi-person scene, a similar
prior exists in a human-centric view for images with few
people. Even for really sparse scenes containing one person
and one object, in a body-part view inspired by [10], the
interactive body parts are statistically rare. For such sparse
scenes, statistics show in images with only one person and
one object from HAKE [6, 7] that only 9.8% of the existing
parts are interactive with objects. That said, the prior still
holds as a learning paradigm. We believe the object-centric
prior is a first step towards deeper exploration on such use-
ful prior.

2. Detailed Analysis on Interactiveness
Detection

As stated in the main paper in Section 4.3, we evalu-
ate our model using the interactive AP metric proposed by
TIN [8]. In this section, we include more details for in-
teractiveness detection. Figure 1 shows the interactiveness
AP for different object categories of our model and previ-
ous state-of-the-art QPIC [11] and CDN [12]. Our model
achieves superior performance on most of the object cate-
gories. In detail, our method takes the lead in 56 of the 80
object categories, while falling behind on only 4 categories.
Furthermore, on over 20 object categories, our advantage is
more than 5 mAP, indicating the efficacy of our interactive-
ness detection for various objects.

3. Prediction Visualization
To vividly show the effectiveness of our method, we

give some typical results on HICO-DET [2] in Figure 2.
Our method can precisely filter out the non-interactive pairs
while detecting interactive pairs in complex scenes.

4. Discussion on Limitations
Though the interactiveness field has greatly enhanced H-

O pairing and boosted the HOI detection, the room for H-O
pairing is still large needing more exploration.

While the proposed bimodal prior is of great efficacy
in interactiveness modeling, it is still an issue to precisely
discern the correspondence between rare/non-rare pairs and
interactive/non-interactive pairs. Since even with a compro-
mised strategy that treats rare pairs as interactive, the per-
formance improvement is considerable, we believe effective
inference on the correspondence may lead to very promis-
ing enhancement.

The proposed interactiveness field is investigated gener-
ally based on the bimodal prior only, while we believe the
more fine-grained study is worthwhile, e.g., the interactive-
ness field for different object categories inspired by Liu et
al. [9], the interactiveness field for different verb categories,
the field under different background contexts, the interplay
of the interactiveness fields of different objects, and so on.

5. Societal Impact

As all the data used here come from public dataset thus
there is no privacy issue. Our work aims at prompting the
HOI understanding, thus may be helpful to the development
of health-care robot, etc. However, there could be poten-
tially negative societal implications, such as its potential
use in surveillance, military purposes which requires seri-
ous moral consideration. We encourage well-intended ap-
plication of our method.

6. Licenses of Adopted Datasets

V-COCO [4] is released under the MIT License. Our
code is mostly derived from DETR [1], QPIC [11] and
TIN [8]. DETR [1] and QPIC [11] are released under the
Apache License 2.0. While TIN [8] is released under the
MIT License.
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