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The supplementary material provides more details, results and
visualizations to support the main paper. In summary, we include
• A. Training labels generation details.
• B. Evaluation set annotation details.
• C. Implementation details of training and inference.
• D. Detailed network architecture and corresponding input and

output dimensionality.
• E. Additional experiments of comparison Transformer against

3D CNN and adopting end-to-end training.
• F. Automatic generated training labels visualization.
• G. Qualitative comparison with other methods
• H. Cross-environment and cross-dataset generalization results

visualization.

A. Training Labels Generation Details
Hand trajectory generation. We provide additional implemen-
tation details of future hand trajectory training labels generation.
As we project hand locations from all future frames to the last
observation frame, we need to handle the case when there are
missing hand detections in future frames. We fill the gap of
missing time steps by conducting Hermite spline interpolation.
Such interpolation guarantees the smoothness and continuousness
of the generated trajectory. We generate the future hand trajectory
at 20 FPS and sample at 4 FPS for training.

Interaction hotspots generation. For interaction hotspots
training label generation, we detect contact points in the contact
frame and project them back to the last observation frame by
a similar technique as future hand trajectory generation. However,
we need to handle the active object case, i.e. the object is moved
by the hand in future frames, as shown in Figure 1. To this end,
we obtain a future active object trajectory similar to the hand and
move the contact points to the active object’s original place where
it stays still in the last observation frame after the projection.

B. Evaluation Annotations Details
We use the Amazon Mechanical Turk platform to collect

interaction hotspot annotations on the evaluation set. The
interface is shown in Figure 2. We provide the contact frame
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Figure 1. Demonstration of how to generate interaction hotspots in active
object case. The left image shows the contact frame, while the right
image shows the last observation frame. The detected contact points
are shown in magenta dots in both frames. We move the detected contact
points along the active object future trajectory (yellow line in the left
image) to its original place in the last observation frame to compute
the correct interaction hotspots.

Figure 2. Interface for collecting interaction hotspot annotations on eval-
uation set. The left image shows the contact frame, while the right image
shows the last observation frame. users are asked to place points (green
dots) on the same object location in the right image touched by the hand
in the left image. All the placed points are visible and on some objects.

in the left image and the last observation frame in the right image
in the layout. Users are asked to place points on the same object
location in the right image touched by the hand in the left image.
The green dots are the labeled points by users. We require all
the placed points to be visible and touched by the hand in the left
image but haven’t been touched in the right image. We collect
1-5 contact point labels for each sample in the evaluation set.

C. Implementation Details
In our proposed Transformer model, we set the embedding

dimension to be 512 and use a dropout rate of 0.1 for both
encoding and decoding blocks. In the C-VAE head network of
both hand and object, we implement it as a 2-layer MLP, each
for the encoding function Fenc and the decoding function Fdec.
In the regular training epochs, we use cosine annealed learning
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Stage Configuration Output
0 Input videos T×256×454×3

Backbone
1 TSN [13] T×1024×8×14

1 Hand-RoiAlign [3] 2×T×1024

1 Object-RoiAlign [3] 2×T×1024

1 Global-RoiAlign [3] T×1024

Hand-Object Detector [11]
1 Hand location 2×T×4

1 Object location 2×T×4

Pre-processing
2 Hand MLP 2×T×512

2 Object MLP 2×T×512

2 Global MLP T×512

2 Input tokens 5×T×512

OCT Encoder E
3 encoding blocks B 5×T×512

OCT Decoder D
4 decoding blocks B 5×T×512

Hand C-VAE
5 encoding function Fenc 256 (µ)
5 decoding function Fdec 2 (H)

Object C-VAE
5 encoding function Fenc 256 (µ)
5 decoding function Fdec 2 (O)

Table 1. Network architecture of the proposed model and corresponding
dimensionality.

rate decay starting from 1e−4. During inference, as we need the
hand location in the last observation frame as the 0-th input to the
decoder, we set the normalized left hand location to (0.25,1.5) and
right hand location to (0.75,1.5) when any of them are invisible,
followed [5]. Our model is implemented with PyTorch [9].

Epic-Kitchens. On Epic-Kitchens, our model takes 2.5s
observations as input and forecasts future 1s hand trajectory and
interaction hotspots. We sample the videos at 4 fps for training
and evaluation. We train our model for 35 epochs, including 5
epochs warmup.

EGTEA Gaze+. On EGTEA Gaze+, we set the anticipation
time to be 0.5s following [2,7], given it has a smaller angle of
view against the Epic-Kitchens dataset. Our model takes 1.5s
observations as input. We sample the videos at 6 fps for training
and evaluation. We train our model for 25 epochs, including 5
epochs warmup.

D. Network Architectures
The network architecture is illustrated in Table 1. We utilize

ROIAlign [3] to crop the global, hand, and object features in
each input frame t with dimension 1024. Then the extracted
features and the detected hand and object bounding box locations
are fused in the pre-processing module to get Transformer input
tokens. The tokens are passed through the OCT encoder and

Table 2. Comparison against 3D CNN on EK100 dataset. (↑/↓
indicates higher/lower is better.) The 3D CNN uses I3D with ResNet-50
as backbone architecture. The proposed transformer model outperforms
3D CNN in both trajectory estimation and interaction hotspots prediction
across all metrics.

Trajectory Interaction Hotspots

Model ADE ↓ FDE ↓ SIM ↑ AUC-J↑ NCC ↑
I3D [1] 0.19 0.16 0.16 0.64 0.55
Ours 0.12 0.11 0.19 0.69 0.72

Table 3. Comparison of performance by adopting end-to-end
training of our model on the EK100 dataset. In the paper, we report
the performance of utilizing the frozen backbone. Here we compare
the performance by training the model end-to-end. We observe a
slight performance gain on trajectory estimation. Given that they
achieve comparable performance and training end-to-end is more
time-consuming, we freeze the backbone in our experiments.

Trajectory Interaction Hotspots

End-to-End ADE ↓ FDE ↓ SIM ↑ AUC-J↑ NCC ↑
No 0.12 0.11 0.19 0.69 0.72
Yes 0.11 0.11 0.19 0.70 0.70

decoder independently. The final future hand trajectory H at each
time step is sampled from the hand C-VAE in an auto-regressive
manner. The final object contact points are similarly sampled
from the object C-VAE.

E. Additional Experiments
Comparison to 3D CNNs. We compare our proposed
Transformer model with 3D CNN, which is widely used in video
understanding. We adopt the I3D [1] with ResNet-50 [4] as
backbone for 3D CNN. On the top of the backbone output, we
predict the future hand locations and contact points by two head
networks, similar to the hand and object head used in OCT. The
I3D is pre-trained on Kinetics [6] dataset. We trained the 3D
CNN under the same setting as we trained OCT. The performance
is shown in Table 2. Experimental results show that by utilizing
Transformer architecture against 3D CNN, we could improve
the performance on both tasks. The OCT improves the FDE
by 58.3% and ADE by 45.5% for trajectory estimation, SIM by
+3%, AUC-J by +5%, and NSS by +17% for hotspots predic-
tion on the EK100 dataset. This demonstrates the superiority
of adopting Transformer architecture for visual forecasting.

End-to-end training. In the main paper, we freeze the
backbone TSN [13] and only train the OCT. We compare the
performance against training end-to-end by fine-tuning the
backbone along with the OCT. We apply data augmentation
including random flipping and color jittering during training.
The performance is shown in Table 3. As can be seen, both
models achieve comparable performance on both tasks. Given
that training end-to-end is more time-consuming, we freeze the
backbone in our experiments to accelerate training.



Figure 3. Visualization of the automatically generated training labels
on Epic-Kitchens dataset. The right and left future hand trajectory are
shown in red and green. The heatmap indicates the interaction hotspots.

Figure 4. Visualization of the automatically generated training labels
on EGTEA Gaze+ dataset. The right and left future hand trajectory are
shown in red and green. The heatmap indicates the interaction hotspots.

F. Training Labels Visualization

We visualize the automatically generated training labels on
Epic-Kitchens and EGTEA Gaze+ datasets in Figure 3 and
Figure 4. It can be seen from the figures that our method could
generate high-quality training labels under different kitchen
environments and different subjects.

G. Qualitative Comparisons

We compare our model’s prediction of future hand trajectory
and interaction hotspots against methods that achieved second-
best performance in each task, as reported in Table 1 and Table 2
in the main paper.

Figure 5. Qualitative comparison of future hand trajectory against
Seq2Seq [12] on the EK100 dataset. The first column shows the
Seq2Seq prediction, the second column shows results of our method,
and the third column are the ground-truth. The right and left hand tra-
jectory are shown in red and green. Our method’s prediction is more close
to ground-truth against Seq2Seq and better reflects human’s intention.

Figure 6. Qualitative comparison of interaction hotspots estimation
against Hotspots [8] on EK100 dataset. The first column shows the
Hotspots prediction, the second column shows results of our method,
and the third column are the ground-truth. From the visualization,
we observe Hotspots fails when there are multiple candidate objects
in the cluttered scene, while our method could better capture the future
interactions.

Hand trajectory comparison. We visualize the prediction re-
sults on the EK100 of our method and SeqSeq [12] that utilizes
LSTM for trajectory estimation. The results are shown in Fig-
ure 5. As can be seen, our method’s prediction is more close to the
ground-truth against Seq2Seq and better reflects human intention.

Object interaction hotspots comparison. We compare our
model’s prediction of interaction hotspots against Hotspots [8]
that employ Grad-Cam [10] to infer future hotspots map. Note
that Hotspots takes the ground-truth future action label and last
observation frame as input. The results are shown in Figure 6.
We observe that Hotspots’s prediction is struggling when there
are multiple objects present in a cluttered scene. This implies
forecasting future interaction hotspots is more challenging than
the video affordance grounding task solved by Hotspots. The



Figure 7. Qualitative visualization of future hand trajectory and
interaction hotspots on unseen kitchens and participants on the EK100
dataset. Our model is generalizable to unseen environments and could
give reasonable predictions.

Figure 8. Qualitative visualization of cross-dataset generalization results.
The model is trained on Epic-Kitchens and tested on EGTEA Gaze+.
We show 6 different samples. In each pair of sample, the left shows
our model prediction, the right shows the ground-truth. The future hand
trajectory is shown purple. Our model demonstrates strong cross-domain
generalization.

future hotspots estimation needs observation frames as context
to locate future hand-object interactions.

H. Generalization Results Visualization

Generalization on the unseen kitchens. We visualize our
model’s prediction on the unseen environment on the EK100
dataset. The selected samples come from the validation split that
contains unseen kitchens and participants. We show 6 different
samples in Figure 7. Though the kitchen environment is unseen
in training, our model could still predict reasonable future hand
trajectory and interaction hotspots, which shows the in-domain
generalization ability of our model.

Cross-dataset generalization. We visualize the cross-dataset
generalization ability on the EGTEA Gaze+ dataset. The model is
trained on Epic-Kitchens and tested on EGTEA Gaze+. We show
6 different samples in Figure 8. Our model could well capture
the human intention under unseen environments and subjects,
forecasting future hand trajectory and interaction hotspots close
to the ground-truth. It demonstrates the strong cross-domain
generalization ability of our model.
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