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1. More Details about Dataset

Choice of Data and Data Collection. Many learning-
based approaches use motion and gesture training data cap-
tured in a MoCap studio with complex motion capture sys-
tems [10, 12]. They can acquire more accurate human mo-
tion data compared to automatic annotations on internet
videos. However, such methods have the following draw-
backs: 1) Owing to the high cost of MoCap data, it is
hard to build a large-scale corpus of data covering vari-
ous speaking contents and styles. For example, the length
of MSP-AVATAR [15] and Personality Dyads Corpus [17]
are less than 3h. 2) When capturing co-speech gesture data
in the studio, the actors/actresses are asked to deliberately
talk with their arms and hands moving, which contributes
to the unnaturalness and exaggeration of captured motion
data. Therefore, we follow the previous works [6, 18, 19]
to collect internet videos and annotate 3D human pose as
pseudo ground truth for later training. Specifically, Ginosar
et al. [6] and Habibie et al. [7] use a speaker-specific gesture
dataset of a very small number of speakers, i.e., 10 speakers
in [6] and 6 speakers in [7], making them unable to transfer
to general speaking styles. TED Gesture dataset is proposed
by Yoon et al. [18] which contains over 1,700 TED talks
covering diverse topics and speaker styles. Following Yoon
et al. [18], we propose to build our TED-Expressive dataset
based on the raw videos of TED talks. Differently, since the
flexible finger movement matters a lot when people talk, we
add the information of finger keypoints for more expressive
co-speech gesture dataset establishment. We collect inter-
net videos from the official TED channel on YouTube.1 We
finally get 1,764 videos and their corresponding text tran-
scripts.

1We obey the TED Talks Team’s Creative Commons License (CC BY-
NC-ND 4.0 International) by referencing all the video links shown in our
papers. We sincerely thank the permission of the TED Talks Team for
using the videos, audios and transcripts in this paper.

Pose Annotation and Post-Processing. To get the reliable
pseudo ground truth of co-speech human upper body pose
with finger keypoints, we leverage the state-of-art 3D hu-
man motion estimator ExPose [4] for annotation. Similar
to the step of [19], we segment videos into smaller shots by
their scenes and annotate the 2D human pose of each frame
by OpenPose [3]. With the 2D pose prior provided by Open-
Pose, we use ExPose [4] to annotate 3D upper body key-
points. Concretely, we use 43 keypoints, including 13 upper
body joints (spine, neck, nose, left/right eyes, ears, shoul-
ders, elbows and wrists, totally 13 = 3+5∗2) and 30 finger
joints (3 joints for each finger, totally 30 = 3 ∗ 5 ∗ 2). Then
we select shots of interest under the following conditions:
1) the above mentioned 43 keypoints of speaker are visible
for more than 50% frames of a clip; 2) the speaker should
not remain almost still in the whole shot, i.e., the variance
of motion is quite small; 3) the clip is longer than 5s. The
statistics of TED Gesture and TED-Expressive dataset are
recorded in Table 1. For the TED Gesture dataset, we ran-
domly split the segments into the 80% training set, 10%
validation set, 10% test set and finally get 199,384; 26,795;
and 25,930 segments in each partition.

Pose Representation and Quality. After the filtering pro-
cess, we effectively eliminate the influence of bone length
by normalizing them into 42 unit directional vectors to rep-
resent each bone. Such 3D representation is invariant to
root joint motion and body shape, thus making it more sta-
ble in the training phase. At the inference stage, the mean
bone length over the training set is multiplied to predicted
bone vectors for visualized results. The whole pipeline is
automated, which facilitates us to build a large corpus of
co-speech gesture dataset. Figure 3 shows the correspon-
dence between keypoint index and joints. We can see that
there are totally 43 annotated upper body keypoints, which
are then transformed into 42 unit direction vectors as men-
tioned above.
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Statistics # of Videos Interest Shots Length # of Segments Interest Ratio

TED Gesture [18, 19] 1,766 106.1h 252,109 25%
TED-Expressive 1,764 100.8h 240,447 21%

Table 1. Statistics of the TED Gesture and TED-Expressive dataset.

As the pose annotations serve as pseudo ground truth in
our pipeline, the quality of annotations is crucial for train-
ing. However, since the pose representation is 3D, we can
not follow Ginosar et al. [6] to evaluate the quality of an-
notations by automatic pipeline against human annotations.
But the high performance of ExPose on benchmark datasets
and our filtering algorithm guarantee that the data quality
is good enough for utilization. Please refer to ExPose [4]
for the detailed quantitative 3D pose estimation results on
benchmark dataset. Overall, we use the open-source code
of Trimodal [18], OpenPose [3] and ExPose [4] following
their licenses2.
Speech Audio Pre-Processing. The speech audios accom-
panied TED videos are raw waveforms, which are pro-
cessed to 16kHZ and convert to mel-spectrograms as 2D
time-frequency representations for more compact informa-
tion preservation. The FFT window size is 1024 and the hop
length is 512.
Speech Text Pre-Processing. We collect speech text in-
put with the transcripts of TED videos. Then, the onset
timestamps of each word are extracted by the Gentle forced
aligner [14] to insert padding tokens. For example, for the
speech text “Good morning everyone”, if there is a short
pause between the word “morning” and “everyone”, then
the padded word sequence is “Good morning ⋄ ⋄ everyone”
as padded by Gentle if the time of this sentence is 5. Fol-
lowing the process of [18], the padded word sequences are
transformed into word vectors of 300 dimensions through a
word embedding layer.

2. Architecture Details
Audio Encoder Ea. The audio encoder is a ResNetSE34
borrowed from [5]. Specifically, we define the features
output from ResNet Stage-2 as shallow feature map, fea-
tures output from ResNet Stage-3 as middle feature map,
features output from ResNet Stage-4 as deep feature map.
Then, a series of upsampling, convolution, batchnorm and
linear layers transform corresponding audio feature maps
into the same size. When the input audio mel-spectrogram
of size 1× 128× 70, the channel dimension and frequency,
time resolutions of different level features f low

a , fmid
a and

fhigh
a ∈ R32 with their corresponding operations are shown

2ExPose License: https://github.com/vchoutas/expose/blob/master/LICE
NSE; OpenPose License: https://github.com/CMU-Perceptual-Computing
-Lab/openpose/blob/master/LICENSE; Trimodal: https://github.com/ai4r
/Gesture-Generation-from-Trimodal-Context/blob/master/LICENSE.md

in Table 2. The detailed feature dimensions after each op-
eration are shown in Table 3. In this way, the hierarchical
audio features are transformed into the same shape and the
time dimension is exactly the frame number of a clip, i.e.,
34 in our experiment, which is convenient for RNN-based
model to take information of each time step as input. After
the linear blending of multi-level features, hierarchical au-
dio features for different levels of body parts are established
and finally feed to cascaded bi-GRU for pose generation in
a coarse-to-fine manner.
Text Encoder Et. With the speech text pre-processing
mentioned above, the word sequences are transformed into
word vectors. Next, these word vectors are encoded by an
off-the-shelf temporal convolutional text encoder [2]. The
text encoder Et is 4-layered, the receptive field is 16 padded
words centered at the current time step and the output di-
mension of text feature ft = Et(t) is 32. In this way, the
high-level audio feature and text feature at time-step t are
both of dimension 32, which enables the later contrastive
learning strategy to leverage the natural audio-text corre-
spondence for achieving discriminative cross-modal feature
extraction.
Speaker Identity Encoder EID. The speaker identity en-
coder network EID uses the standard ResNet-18-S5 model.
And we do not load ImageNet pretrained weights. We also
remove Global Average Pooling (GAP) and the final clas-
sifier to only leave the visual backbone for visual feature
extraction. The input of the encoder is the first M refer-
ence frame images of a clip {I1, . . . , IM} and the output
is speaker identity embedding fid = EID(I1, . . . , IM ) ∈
R18. Then through a linear layer of FC (18, 18) and soft-
max function, fid is transformed into the style coordinator
C ∈ R3×H , where

∑3
i=1 C[i, h] = 1. In this way, the

speaker identity can affect hierarchical audio feature weight
on motion hierarchies.
Motion Hierarchy Establishment. The skeleton of human
body is like a tree structure, where the father-joint carries
the child-joint to move. To effectively learn the dynamic
patterns of different human body parts, we propose to de-
tach the joints from human body ends (fingers) to the main
structure (spine) step-by-step and build a motion hierarchy
of totally 6 hierarchies: 1) Nose, neck, spine and left/right
eye, ear, shoulder; 2) Add left and right elbow; 3) Add left
and right wrist; 4) Add left and right finger’s first joint; 5)
Add left and right finger’s second joint; 6) Add left and right
finger’s third joint. Note that we do not separate more de-

https://github.com/vchoutas/expose/blob/master/LICENSE
https://github.com/vchoutas/expose/blob/master/LICENSE
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/LICENSE
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/LICENSE
https://github.com/ai4r/Gesture-Generation-from-Trimodal-Context/blob/master/LICENSE.md
https://github.com/ai4r/Gesture-Generation-from-Trimodal-Context/blob/master/LICENSE.md


Feature Map Output Shape Operation Feature
Input - 1× 128× 70 Pre-Conv -

Shallow Stage-2 64× 64× 35 Conv2d, ReLU, BN, FC f low
a

Middle Stage-3 128× 32× 18 PixelShuffle, Conv2d, ReLU, BN, FC fmid
a

Deep Stage-4 256× 16× 9 PixelShuffle, Conv2d, ReLU, BN, FC fhigh
a

Table 2. Definitions of multi-level audio feature maps and transformed features on ResNetSE34. The shallow/middle/deep feature
maps are from the output of ResNetSE34’s stage2/3/4. Then, they are transformed by a series of operations to low/mid/high-level audio
features, respectively.

Shallow Festure Map from Stage-2
Operations Feature Map Shapes

Input 64× 64× 35
Conv2d (64, 2, 1) 64× 63× 34

ReLU, BatchNorm2d (64) 64× 63× 34
Reshape 4032× 34

FC (4032, 32) 32× 34
Middle Festure Map from Stage-3
Operations Feature Map Shapes

Input 128× 32× 18
PixelShuffle (2) 32× 64× 36

Conv2d (32, 3, 1) 32× 62× 34
ReLU, BatchNorm2d (32) 32× 62× 34

Reshape 1984× 34
FC (1984, 32) 32× 34

Deep Festure Map from Stage-4
Operations Feature Map Shapes

Input 256× 16× 9
PixelShuffle (4) 16× 64× 36

Conv2d (16, 3, 1) 16× 62× 34
ReLU, BatchNorm2d (16) 16× 62× 34

Reshape 992× 34
FC (992, 32) 32× 34

Table 3. Detailed feature shape after specific operations for
the multi-level audio feature extraction. †Note that in the table,
Conv2d (c, k, s) means the output of the convolution is c, kernel
size is k and the stride is s; ReLU, BatchNorm2d (c) means the
relu and batch-norm operation on the feature of channel size c;
Reshape operation combines the channel and frequency dimen-
sion together; FC (i, o) means the fully connected linear layer
whose input dimension is i and output dimension is o; PixelShuf-
fle (r) means the pixel shuffle operation [16] with resolution r.
Specifically, PixelShuffle (r) transforms a feature map of shape
(r2C)×H ×W into C × (rH)× (rW ).

tailed motion hierarchy inside the skeleton of human head.
Because there is hardly internal movement in the skeleton
of head part, i.e., nose, left/right eye and ear. The dynamic
among the keypoints of head part is quite trivial under our
setting, so it is unreasonable to separate them into different
levels of motion hierarchies.
Coarse-to-Fine Pose Generator. According to the estab-
lished motion hierarchy, the number of keypoints for 6 hi-

erarchies is 9, 11, 13, 23, 33, 43. Since the poses are
processed into 3D unit directional vectors representation,
the pose dimension of 6 hierarchies is 24, 30, 36, 66, 96,
126. The cascaded hierarchical pose generator contains 6
bi-directional GRU, with the input of corresponding hier-
archy pose and audio feature and the hidden size of 300.
Note that for the first motion hierarchy, the poses of the
first M frames serve as initial poses and are denoted as
p̂0 = {p0

1, ...,p
0
M , 0, ..., 0}; for the later hierarchies, the

output from the last pose hierarchy is leveraged to initialize
corresponding keypoints. Therefore, ds = 300, da = 32,
d0p = 24, d1p = 24, d2p = 30, d3p = 36, d4p = 66, d5p = 96

and d6p = 126 for the parameters Wh and bh of hierarchical
GRU in the Eqn. 4 of main document. In this way, the next
pose hierarchy can generate pose with information from the
last level of pose, facilitating fine-grained correspondences
between audio sequence and co-speech gestures in a coarse-
to-fine manner. The last layer’s output p̂H from the hierar-
chy is our desired result.

GAN Discriminator D. The architecture of discriminator
D is borrowed from [18], with its detailed network design
in the Table 4.

Pose Auto-Encoder. Since the generation is a multi-
modality problem, it is difficult to use evaluation metrics
like L1 distance or L2 distance to judge whether the gen-
erated result is good or not. Fréchet Inception Distance
(FID) [8] is widely leveraged to evaluate the image genera-
tion quality. It firstly pre-train a feature extractor to extract
image latent features, then calculates the Fréchet distance
between the distributions of the latent feature space of real
and generated images. The feature vectors contain more
information about characteristics, which is more perceptu-
ally plausible than raw pixel space. Based on this, Yoon et
al. [18] propose a similar evaluation metric Fréchet Gesture
Distance (FGD) to evaluate gesture quality.

To further evaluate the pose with expressive finger move-
ments, we train a pose auto-encoder with 43 keypoints on
TED-Expressive dataset. The auto-encoder firstly maps 34-
frame poses into latent dimension of 128, and then recon-
struct them. The detailed structure is borrowed from [18]
and recorded in Table 5.



3. Training Stage and Inference Stage
At the training stage, the speech audios, transcripts and

reference frames are all needed. The speech audio a is en-
coded by the hierarchical audio encoder Ea to get multi-
level audio features f low

a , fmid
a and fhigh

a . The speech tran-
script t is encoded by Et into text features ft, which are
then used by contrastive learning strategy to achieve more
discriminative audio feature extraction. Therefore, speech
text takes an auxiliary effect in our proposed framework.
The reference frames I = (I1, . . . , IM ) are encoded by
EID to represent speaker’s identity fid, which is then trans-
formed to style coordinator C for feature blending. Besides,
reference frames are also used to extract initial poses and fi-
nally feed into cascaded bi-GRU to generate co-speech ges-
tures in a coarse-to-fine manner.

At the inference stage, the speech transcript is not
needed. This is the reason why we do not involve the
variable t in the Eq. 1 in our main text. If the refer-
ence frames and initial poses are available, we can follow
the whole pipeline to generate gestures. For the situations
where reference frames and initial poses are unavailable, we
can sample a style vector from normal distribution to serve
as speaker identity fid. Then we can sample an arbitrary
sequence of initial poses from the dataset to generate the
gestures.

4. Statistics in Physical Constraint
Previous methods on co-speech gesture generation

mostly fail to consider human physics constraints, which
contributes to unnatural pose and incoherent results. There-
fore, we propose to add restrictions on the included angle
between bones to ensure reasonable human pose. Con-
cretely, the pose is represented as bone direction vector,
which is rendered as p = [d1,d2, · · · ,dJ−1] and J is the
total number of joints. For the j-th bone vector dj ∈ R3 and
the (j+1)-th bone vector dj+1 ∈ R3, we can compute their
included angle θj by the arc-cosine function on their co-
sine value. Since there is no benchmark dataset with accu-
rate finger keypoints annotations under co-speech settings,
we use the hand pose estimator ExPose [4] to annotate the
TED-Expressive dataset. With the pseudo ground truth, we
can calculate the mean and variance of each angle, which
later serve as the mean and variance of Gaussian distribu-
tion. The loss function for the physics constraint is the log-
likelihood function:

Lphy = − log

J−1∏
j=1

N (θj ;µj , σ
2
j ) = −

J−1∑
j=1

logN (θj ;µj , σ
2
j ),

(1)
where θj = arccos

dj ·dj+1

∥dj∥∥dj+1∥ is the j-th angle value, µj

and σ2
j are the mean and variance of the j-th angle respec-

tively. We illustrate in Table 6 the means and variances of

the included angles (0-180 degrees) around two important
joints. In particular, we use θs to denote the included an-
gle around the shoulder joint and θe for the included an-
gle around the elbow joint. Although some angles may
not strictly follow the Gaussian distribution, the intention
of physical constraint is to prevent outlier predictions. Thus
the assumption of Gaussian distribution could play the role
in regularizing generated poses. The ablation study in Ta-
ble 4 (the setting of ”w/o Lphy”) shows the effectiveness of
such a constraint.

Statistics Left θs Left θe Right θs Right θe

mean(◦) 116.6 75.1 127.1 85.3
var(◦) 9.01 7.30 7.53 7.22

Table 6. Statistics of important important joint angles.

5. Analysis on Beat Consistency Score Metric
Beat Consistency Score (BC) is a metric adapted by us

for motion-audio beat correlation. Previous methods detect
motion beats by finding the local optima of kinematic veloc-
ity [13], while we propose to utilize the change of included
angle between bones to track motion beats. The main rea-
sons are two-fold: 1) previous methods are under the setting
of music2dance, where human body involves a global body
translation in a large scale. In other word, all of the hu-
man’s body joints move fast when people dance and the ve-
locity quickly drops when they stop to match a music beat.
While in our co-speech gesture settings, the arms are com-
paratively still and the fingers are more flexible, so their
moving scales vary a lot, we can not directly sum up them.
2) Compared to using the shifts of keypoints, we propose
to use the included angle to detect motion beat. This is be-
cause the human body follow a tree structure. If the arm
moves, hand and wrist will follow the movement of arm,
which is similar to the process of orbital revolution and self
rotation: the father-joint carry the child-joint to move like
the orbital revolution and the internal movement of child-
joint resembles self rotation. Therefore, directly calculating
the Euclidean distance for each joint is unreasonable.

After calculating mean absolute angle change (MAAC)
of angle θj , we can calculate the sum angle change rate of a
certain frame t for the n-th clip as:

1

J − 1

J−1∑
j=1

∥θj,n,t+1 − θj,n,t∥1
MAAC(θj)

. (2)

Then we propose to extract the kinematic beat through fil-
tering the angle change rate by following conditions: 1) The
angle change rate is a local optimum, e.g., the angle change
rate of 9, 10, 11 time-step is 0.2, 0.1, 0.2, respectively. Then
the time-step 10 is a local optimum. 2) The difference of



Discriminator D
Feature Feature Shapes Operations
Input 34× 126 Transpose (0, 1)

Pre-Conv Layer-1 126× 34 Conv1d (126, 16, 3), BatchNorm1d (16), LeakyReLU (0.2)
Pre-Conv Layer-2 16× 32 Conv1d (16, 8, 3), BatchNorm1d (8), LeakyReLU (0.2)
Pre-Conv Layer-3 8× 30 Conv1d (8, 8, 3), Transpose (0, 1)

Bi-Directional GRU 28× 8 Bi-Directional GRU (8, 64)
FC-1 28× 64 FC (64, 1), Squeeze(1)
FC-2 28 FC (28, 1), Sigmoid

Output 1 -

Table 4. Detailed structure and feature shape of Discriminator D. †Note that in the table, the meanings of contents in operations
column are: Conv1d (in channels, out channels, kernel size), BatchNorm1d (feature dim), LeakyReLU (alpha), Transpose (axis1, axis2),
Bi-directional GRU (in size, hidden size), FC (in size, out size), Squeeze (axis), Sigmoid.

Pose Encoder
Feature Feature Shapes Operations
Input 34× 126 Transpose (0, 1)

Layer-1 126× 34 Conv1d (32, 3, 1), BatchNorm1d (32), LeakyReLU (0.2)
Layer-2 32× 32 Conv1d (64, 3, 1), BatchNorm1d (64), LeakyReLU (0.2)
Layer-3 64× 30 Conv1d (64, 4, 2), BatchNorm1d (64), LeakyReLU (0.2)
Layer-4 64× 14 Conv1d (32, 3, 1)

Out1 32× 12 Flatten, FC (384, 256), BatchNorm1d (256), LeakyReLU (0.2)
Out2 256 FC (256, 128), BatchNorm1d (128), LeakyReLU (0.2), FC (128, 128)

Latent 128 -
Pose Decoder

Feature Feature Shapes Operations
Input 128 FC (128, 64), BatchNorm1d (64), LeakyReLU (0.2), FC (64, 136)

reshape 136 Reshape (4, 34)
Layer-1 4× 34 ConvTranspose1d (32, 3, 1), BatchNorm1d (32), LeakyReLU (0.2)
Layer-2 32× 36 ConvTranspose1d (32, 3, 1), BatchNorm1d (32), LeakyReLU (0.2)
Layer-3 32× 38 Conv1d (32, 3, 1)
Layer-4 32× 36 Conv1d (126, 3, 1), Transpose(0, 1)

Pose 34× 126 -

Table 5. Detailed structure and feature shape of Pose Auto-Encoder. †Note that in the table, Conv1d/ConvTranspose1d (c, k, s) means
the output of the convolution/transpose-convolution is c, kernel size is k and the stride is s; LeakyReLU, BatchNorm1d (c) means the
leaky-relu and batch-norm operation on the feature of channel size c.

the local optima with either side time-step is larger than a
threshold. This is to filter the trivial situation where angle
change rates are almost the same during a period of time
and guarantee a sudden change of angle change rate as mo-
tion beat. For example, the angle change rate of 8, 9, 10,
11, 12 time-step is 0.11, 0.1, 0.11, 0.1, 0.11. It improper
to take the time-step 9 and 11 as motion beat. The thresh-
old controls what extent of angle change rate difference is
perceived it as a motion beat. A very low threshold will
detect the near-stationary motion sequence as many motion
beats if there are many trivial beats of type 2 mentioned in
the last paragraph. A very high threshold will ignore the
normal motion beat. We present the influence of thresh-

old over all baseline method in Fig. 1. We can see that
our method can achieve superior performance on BC met-
ric with high robustness to threshold compared to baseline
methods. Note that both Attention Seq2Seq [19] and Joint
Embedding [1] show low value of BC Score over all thresh-
old, which also proves that they fail to generate results that
are synchronous to speech since their gestures are almost
still. Although Speech2Gesture [6] shows higher perfor-
mance on low threshold, they match the trivial beats and
perform lower than our method on normal thresholds.



Figure 1. The influence of threshold on Beat Consistency (BC)
Score metric. We present the BC value of baseline methods and
ours under the threshold of range 0.01 to 0.3 with step size of 0.01.

6. Choice of Speaker Identity Extraction

We leverage RGB frames rather than poses for identity
information extraction. The appearances of different identi-
ties would vary significantly. Though dynamic information
can hardly be inferred from the M inputs, our method fo-
cuses more on the appearance information like the speaker’s
height, age and nationality. Inferring speaking styles from
appearances or identities only has also been proven effec-
tive in Yoon et al. [18]. The only speaker-related informa-
tion we can access is the initial frames, thus we are trying
to make the best use of them.

7. Additional Experiments

7.1. Ablation Study on TED Gesture Dataset

We further conduct ablation study on TED Gesture and
report results below, which shows the effectiveness of each
module. The TED Gesture dataset lacks finger annotations,
resulting in the lower motion hierarchy and less significant
performance improvement brought by each module.

metric\setting fhigh
a only Holistic w/o Lphy HA2G-ASR HA2G Full

FGD 3.569 3.682 3.165 3.091 3.072

7.2. Influence of Reference Frame Number M

All the models are implemented with the same amount
of information given as the input, including the number of
initial poses M . The setting of using M = 4 frames as
seed pose is proposed in Trimodal [18]. Our whole setting
basically follows theirs. To investigate the influence of M ,
we further set M as 1 and 7. The results below suggest that
the performance gain derived from additional initial poses
is marginal, which shows the robustness of the proposed
method to hyper-parameter M .

M FGD ↓ BC ↑ Diversity ↑
1 5.994 0.708 169.425
4 5.306 0.715 173.899
7 5.177 0.715 174.313

Table 7. Influence of reference frame number M .

7.3. Randomness of Diversity Metric

The Diversity metric is adapted from [11] and is popu-
larly used in other works [9]. In order to mitigate the influ-
ence of randomness, we randomly sample 500 pairs, which
is much more than the number 200 in [11]. To ensure and
verify the reproducibility, we further conduct the evaluation
10 times (create random samples 10 times with different
random seeds). The results are listed in the table below. We
can see that the difference is comparatively small between
each group, which proves that the Diversity metric can be
reproduced and the sample number of 500 is enough to al-
leviate randomness.

Group 1 2 3 4 5

Diversity 172.58 171.91 173.60 173.66 173.71

Group 6 7 8 9 10

Diversity 172.12 171.88 173.02 173.80 172.83

Table 8. Randomness of the Diversity metric.

8. Limitations and Future Work

Our work mainly have the following limitations: 1)
Since when people talk to others, the most important non-
verbal behavior is upper body movements. Hence we only
delve into the co-speech gesture generation of human up-
per body, without considering full body motions. This will
make our trained avatars fail to walk around like TED Talk
narrators. 2) In the TED Talk dataset, some data samples
have very strong prior on human hand pose at the specific
settings that will affect training, e.g., people with speaker
or chalk in their hand as shown in Fig. 2. 3) Although our
proposed approach can capture the fine-grained motions of
co-speech finger movements and diverse dynamic patterns
of different human body parts, we still find it difficult to
capture some very subtle movements like “shrug”. This is
mainly due to the fact that there hardly exists such action
samples in the dataset and it is very hard for our model to
learn such dynamic patterns. In future work, we will im-
prove our method to capture full-body co-speech gestures
and some very minor pose movements and we will enhance
the automatic dataset pipeline algorithm to filter samples
with strong prior that may affect our training quality.



Figure 2. Examples of data samples at specific setting with very
strong prior on hand pose. We implement the mosaic operations
for all the images to eliminate personally identifiable information.

9. Social Impact

Making co-speech gestures to complement conversa-
tional information is a kind of innate non-verbal behavior
for human, while this work encourages the machine intelli-
gence to be equipped with such ability, especially learn to
animate the subtle hand and arm motions. Therefore, this
work can exert positive impacts on both machine learning
research and application field. On the one hand, the pro-
posed approach identifies the advantages of hierarchical ar-
chitecture design to extract cross-modal information at mul-
tiple granularities and excavate the fine-grained audio-pose
associations, which can further facilitate cross-modal ani-
mation tasks like talking face generation and music2dance
prospectively. On the other hand, the speech-driven gesture
generation technique has a wide range of beneficial appli-
cations for society, including digital human broadcaster and
social robots. Specifically, it could also assist dumb peo-
ple to learn communication skills by teaching sign language
with expressive human-like motions. Since the generated
motions are all skeleton-based, they hardly have detrimen-
tal impact in most cases. Still, it may potentially lead to the
misuse of copyrighted 3D character models if we animate
them without permission. Besides, the bias of the dataset
may have some negative impact, e.g., some gestures may
have negative meanings for some nations. But we believe
the proper use of this technique will enhance positive soci-
etal development.

10. Details of User Study

The study involves 24 participants. They take 25-35 min
to complete the task. The participants are 12 females and
12 males, with age range of 18-24 years old. The users are
unaware of which motion sequence corresponds to which
method or even the ground truth. Specifically, we randomly
shuffle the order of video placement for all methods every
time, so that participants can concentrate only on the quality
of generated results for fair comparison.

We have provided the users with instructions before con-
ducting the study. The participants are asked to judge the
three perspectives in the following manner: a) For “Nat-
uralness”, does motion look natural and like real human
poses regardless of background speech? There should not
be any strange angles and unnatural movements. b) For
“Smoothness”, does the generated motion maintain smooth-
ness in temporal dimension, with no obvious rigid or stuck
movements, regardless of background speech audio? c) For
”Synchrony”, does the generated motion match the corre-
sponding speech audio both rhythmically and semantically?
We also show the raw videos of TED Talk before partic-
ipants’ rating process to help them make more accurate
judgement. 24 participants of 12 females and 12 males are
involved in the study, covering 4 nationalities in order to
bridge biases. 12 of them are researchers from the field of
deep generative models and others are from other fields.
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Figure 3. The detailed 3D keypoints output annotation by Ex-
Pose [4]. In particular, we annotate 43 upper body keypoints, in-
cluding: spine (0), neck (1), left shoulder (2), right shoulder (3),
left elbow (4), right elbow (5), left wrist (6), right wrist (7), left
index (8, 9, 10), left middle (11, 12, 13), left pinky (14, 15, 16),
left ring (17, 18, 19), left thumb (20, 21, 22), right index (23, 24,
25), right middle (26, 27, 28), right pinky (29, 30, 31), right ring
(32, 33, 34), right thumb (35, 36, 37), nose (38), right eye (39), left
eye (40), right ear (41), left ear (42). Note that the holistic upper
body with keypoints index is shown at the top of figure, the zoom-
in images of left hand and right hand with detailed annotations are
shown at the bottom.
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