
Appendix for Mutual Centralized Learning in Few-shot Classifications

A. Proof of Eqn.(5)
Proof of periodic: Consider the eigenvalue λ of P by the
determinant equation

det(λI −P) = det

(
λI −PSq

−PqS λI

)
= det(λ2I −PSqPqS), (A.1)

it can be found that the eigenvalues of P are the square roots
of eigenvalues of PSqPqS.

Since both PSq and PqS are column-normalized ma-
trices, their product is still column-stochastic that can be
proved by:

eTNrPSqPqS = eTr PqS = eTNr (A.2)

where e|·| is a vector of ones with different length indicated
by its subscript. Nr and r are the cardinalities of S and q,
respectively.

We know (by the definition of stochastic matrix) that λ =
1 is the largest eigenvalue of PSqPqS, and its uniqueness is
guaranteed since there is no zero entry in both PSq and PqS.
According to Eqn.(A.1), we get another eigenvalue λ = −1
for stochastic matrix P. From the Perron–Frobenius theorem
that the period of P equals to the number of eigenvalue
whose absolute value is equal to the spectral radius of P, we
prove its stationary distribution is of period 2.

Proof for even periods: We give the limit of matrix P2t

for the extremely large number of t as follows:

lim
t→∞

P2t = lim
t→∞

(
PSqPqS 0

0 PqSPSq

)t

=

(
lim
t→∞

[PSqPqS]
t

0

0 lim
t→∞

[PqSPSq]
t

)
(A.3)

Since we have shown in Eqn.(A.2) that PSqPqS is also
column-stochastic, we use π(S) to denote its stationary dis-
tribution vector by equation lim

t→∞
[PSqPqS]

t
= π(S)eTNr.

By analogy, the infinity power of PqSPSq could also
reach a similar stationary distribution π(q) with equation
lim
t→∞

[PqSPSq]
t
= π(q)eTr .

Substituting the two stationary vectors into Eqn.(A.3),
we can prove the stationary distributions of P for the even
periods in Eqn.(5).

Proof for odd periods: From the definition of matrix prod-
uct, we first have

lim
t→∞

P2t−1 = lim
t→∞

P2t+1

= P lim
t→∞

P2t

=

(
0 PSqπ(q)e

T
r

PqSπ(S)e
T
Nr 0

) (A.4)

Next, according to the definition of π(q) and π(S), we
can get

π(q)eTr = lim
t→∞

[PqSPSq]
t

= PqS

(
lim
t→∞

[PSqPqS]
t
)
PSq

= PqSπ(S)e
T
NrPSq.

(A.5)

If we right matrix product of er on both sides of Eqn.(A.5),
we have

π(q)eTr er = PqSπ(S)e
T
NrPSqer (A.6)

Since eTr er = r and eTNrPSqer =
∑

i

∑
j [PSq]ij = r,

Eqn.(A.6) can be simplified by dividing the same scalar r on
both sides:

π(q) = PqSπ(S). (A.7)

By analogy, a symmetric equation π(S) = PSqπ(q) can
also be easily proved in the same way as from Eqn.(A.5) to
Eqn.(A.7).

Substituting π(S) = PSqπ(q) and π(q) = PqSπ(S)
into Eqn.(A.4), we can prove the stationary distributions of
P for the odd periods in Eqn.(5).

B. Proof of Lemma 1
We have shown in Appendix A that there exists an eigen-

value λ = 1 for the column-stochastic matrix P with equa-
tion Px = x. If we interpret the transition matrix as an
adjacency matrix for the directed bipartite graph, the eigen-
vector centrality of that graph is x.

1

We split the eigenvector x into xS, xq for the bipartite
vertex set q,S respectively and the single-mode eigenvector
centralities of the single vertex set can therefore be formu-
lated by:

x̂S =
xS∑
s∈S xs

x̂q =
xq∑
q∈q xq

(B.1)

If we left matrix product P on both sides of Px = x, we
will have P2x = P(Px) = Px = x. To write it in matrix
notation, we havePSqPqS 0

0 PqSPSq


︸ ︷︷ ︸

P2

xS

xq


︸ ︷︷ ︸

x

=

xS

xq


︸ ︷︷ ︸

x

. (B.2)

Consider the first row of P2 matrix product with x in
Eqn.(B.2), we have PSqPqSxS = xS. Since π(S) is the
eigenvector of PSqPqS of eigenvalue 1 with probability
constraint eTNrπ(S) = 1, π(S) is exactly equivalent to the
single-mode eigenvector centrality x̂S in Eqn.(B.1).

By analogy, if we consider the matrix product between
the second row of P2 and x in Eqn.(B.2), we can prove
π(q) equivalent to the conjugate single-mode eigenvector
centrality x̂q of the bipartite graph.

C. Proof of Eqn.(6)
Eqn.(6) to prove:

Pr(ỹ = c) = lim
t→∞

∑
z∈z

E

[
t∑

k=1

1[Xk ∈ sc]

∣∣∣∣X0 = z

]
∑
z∈z

E

[
t∑

k=1

1[Xk ∈ S]

∣∣∣∣X0 = z

]
=
∑
s∈sc

[π(S)]s

We first define Pr(ỹ = c) ≜ lim
t→∞

Pr(t). Since we have
proof that Markov process of transition matrix P is of 2
period in Appendix A, the proof of Eqn.(6) is thus equivalent
to prove:

lim
t→∞

Pr(2t) = lim
t→∞

Pr(2t− 1) =
∑
s∈sc

[π(S)]s (C.1)

Proof for even period: From the definition, we have

Pr(2t) =

1

Nr + r

∑
z∈z

2t∑
k=1

∑
s∈sc

[
Pk
]
sz

1

Nr + r
(rt+Nrt)

=
1

t

t∑
k=1

[
1

Nr + r

∑
s∈sc

(∑
z∈S

[
P2k

]
sz

+
∑
z∈q

[
P2k−1

]
sz

)]
(C.2)

where rt is the number of visits from particles in q to support
features in S after 2t steps of Markov bidirectional random
walk. Nrt is the number of visits starting from particles in S
to support features in S. The second equality is derived from
the diagonal/anti-diagonal property of P2k/P2k−1 respec-
tively where the sub-matrices 0 are ignored in summation.

Taking Eqn.(C.2) to the extreme, we have

lim
t→∞

Pr(2t)

=
1

Nr + r

∑
s∈sc

(∑
z∈S

[
lim
t→∞

P2t
]
sz

+
∑
z∈q

[
lim
t→∞

P2t−1
]
sz

)
=
∑
s∈sc

[π(S)]s

(C.3)
where the first equality is derived from the absorbing of
periodic Markov chain and the second equality is from the
substitution of Eqn.(5).

Proof for odd period : From the definition, we have

Pr(2t− 1) =

1

Nr + r

∑
z∈z

2t−1∑
k=1

∑
s∈sc

[
Pk
]
sz

1

Nr + r
(rt+Nr(t− 1))

=
1

ω

∑
s∈sc

[∑
z∈q

Psz +

t∑
k=2

(∑
z∈S

[
P2k−2

]
sz

+
∑
z∈q

[
P2k−1

]
sz

)]
(C.4)

where ω equals (Nr+ r)(t− Nr
Nr+r). Take Eqn.(C.4) to the

extreme, we have

lim
t→∞

Pr(2t− 1)

=
1

Nr + r

∑
s∈sc

(∑
z∈S

[
lim
t→∞

P2t−2
]
sz

+
∑
z∈q

[
lim
t→∞

P2t−1
]
sz

)
=
∑
s∈sc

[π(S)]s

(C.5)

where lim
t→∞

1

t− Nr
Nr+r

∑
z∈q

Psz = 0 is ignored when t ap-

proaches the infinity.

D. Pseudo codes
We use block-wise inversion in Eqn.(14) that is more

computational-efficient than directly inverting Eqn.(10)
when the number of support classes N is large. The corre-
sponding Pytorch-code can be found above where the whole
calculation is performed in parallel via batched matrix multi-
plication and inversion.

support of tensor shape [N, d, r]:
N-way FSL, each class owns r number of d-dimensional dense features
query of tensor shape [q, d, r]:
q query examples, each of them owns r dense features.
#
gamma: scaled similarity parameter
beta: scaled similarity parameter
alpha: Katz attenuation factor
alpha_2: the square of alpha
#
@: the matrix multiplication operator in Pytorch
def inner_cosine(query, support):

N, d, r = support.shape
q = len(query)
query = query / query.norm(2, dim=-1, keepdim=True)
support = support / support.norm(2, dim=-1, keepdim=True)

support = support.unsqueeze(0).expand(q, -1, -1, -1)
query = query.unsqueeze(1).expand(-1, N, -1, -1)
S = query_xf.transpose(-2, -1)@support_xf
S = S.permute(0, 2, 1, 3).contiguous().view(q, r, N * r)
return S

def MCL_Katz_approx(query, support):
N, d, r = support.shape
q = len(query)
S = inner_cosine(query, support) # [q, r, Nr]
St = S.transpose(-2, -1) # [q, Nr, r]

column-wise softmax probability
P_sq = torch.softmax(gamma * St, dim=-2)
P_qs = torch.softmax(beta * S, dim=-2)
From the derivations in Eqn.(F.2)
inv = torch.inverse(

torch.eye(r)[None].repeat(q, 1, 1) - alpha_2 * P_qs@P_sq
) # [q, r, r]
katz = (alpha_2 * P_sq@inv@P_qs).sum(-1) + (alpha * P_sq@inv).sum(-1)
katz = katz / katz.sum(-1, keepdim=True)
predicts = katz.view(q, N, r).sum(-1)
return predicts

Code 1. Pytorch pseudo-code for 1-shot MCL (Katz approximation) in a single episode.

E. Implementation details

Preprocessing: During training on CUB, miniImageNet
and tieredImageNet, images are randomly cropped to 92×92
and then resized into 84×84. For meta-iNat and tiered-meta-
iNat, images are randomly padded then cropped into 84×84.
Unlike previous methods , we only random horizontal flip
the image during training.

During inference, images are center cropped to 92× 92
and then resized into 84× 84 for CUB, miniImageNet and
tieredImageNet. For meta-iNat and tiered-meta-iNat, images
are already 84× 84 and are fed into the models directly.

Network backbones: We use two backbones in our ex-
periments: Conv-4 and ResNet-12. Conv-4 contains four
convolutional blocks, each of which consists of a 3× 3 con-
volution, a BatchNorm, a LeakyReLU(0.2) and an additional
2× 2 max-pooling. ResNet-12 consist four residual blocks,
each with three convolutional layers, with LeakyReLU(0.1)

and 2× 2 max-pooling on the main stem. Given the image
of input size 84× 84, Conv-4 outputs a feature map of size
5× 5× 64 while ResNet-12 outputs that of size 5× 5× 64.

Re-implemented baselines: We re-implement ProtoNet
[9] and RelationNet [10] in our unified framework as two
global feature based baselines for our centrality plugin. We
borrow most of codes from their official implementations and
introduce slight modifications to improve their performances
inspired their subsequent work [13, 14]. For ProtNet, we
introduce a fixed temperature scaling with 1/64 before in
softmax function. For RelationNet, we change the original
MSELoss to CrossEntropyLoss.

Pre-training: We use the pre-training + meta-training
procedure for ResNet-12 backbones on miniImageNet and
tieredImageNet like most of the methods in the literature [6,
13, 15]. We follow the same pre-training technique from the
dense features based FRN [13] to learn spatially distinctive

Model Backbone 1-shot 5-shot

Baseline [3] ResNet-10 - 65.57 ± 0.70

Baseline++ [3] ResNet-18 - 62.04 ± 0.76

MetaOptNet [5] ResNet-12 44.79 ± 0.75 64.98 ± 0.68

MatchingNet+FT [11] ResNet-10 36.61 ± 0.53 55.23 ± 0.83

RelationNet+FT [11] ResNet-10 44.07 ± 0.77 59.46 ± 0.71

GNN+FT [11] ResNet-10 47.47 ± 0.75 66.98 ± 0.68

Neg-margin [7] ResNet-18 - 69.30 ± 0.73

Centroid et al. [1] ResNet-18 46.85 ± 0.75 70.37 ± 1.02

FRN [13] ResNet-12 51.60 ± 0.21 72.97 ± 0.18

ProtoNet† [9] ResNet-12 40.05 ± 0.18 55.29 ± 0.19

ProtoNet+MCL ResNet-12 42.02 ± 0.19 64.76 ± 0.20

MCL ResNet-12 55.48 ± 0.22 75.93 ± 0.18

MCL-Katz ResNet-12 53.22 ± 0.22 77.39 ± 0.18

Table S1. Few-shot classifications (%) in the cross-domain setting:
miniImageNet→CUB. †: our re-implemented results in our unified
framework that share the same dataloader and training strategies.

dense features, e.g., run 350 epochs of batch size 128 on
miniImageNet, using SGD with initial learning rate 0.1 and
decaying by a factor of 10 at epochs 200 and 300.

Meta-training on mini-/tieredImageNet: We follow the
earliest dense feature based DN4 [6] that randomly sam-
ple 20,000/200 episodes in an epoch for Conv-4/ResNet-12
backbone, respectively. Since we didn not use pre-training
for Conv-4, the number of episodes per epoch of Conv-4 is
far larger than ResNet-12 for convergences. In each episode,
besides K support images in each class, 15 query images
will also be selected from each class.

For Conv-4, we adopt Adam optimizer with initial learn-
ing rate of 1e-3 to train for 30 epochs (on both datasets) and
reduce it by a factor of 10 every 10 epochs.

For ResNet-12, we adopt SGD with initial learning rate
of 5e-4 (40 epochs on miniImageNet and 60 epochs on
tieredImageNet) and cut it by half every 10 epochs.

Unlike the latest dense feature based FRN that adopts
larger way during meta-training (e.g., 25-way for training
1-shot models and 20-way for 5-shot models), we did not
use that setting in widely used mini-/tireredImageNet as we
thought it would be unfair in comparing with other methods.

Meta-training on fine-grained datasets: We follow
the latest fine-grained few-shot classification setting from
FRN [13] as most of the comparing performances in Table 2
are from them. Although practitioners agree on the train/val-
idation/test split ratio (i.e., 100/50/50) on CUB dataset, there
is no official class split. In our experiments, we use the same
train/val/test class split as in [13] for a fair comparison.

For CUB, we train all our Conv-4 models for 1200 epochs
using SGD with Nesterov momentum of 0.9 and an initial
learning rate of 0.1. The learning rate decreases by a factor
of 10 at epoch 400 and 800. ResNet-12 backbone trains for
600 epochs and scale down the learning rate by 10 at epoch

Methods fθ(·) 1-shot 5-shot

Baseline [3]

Global feature

53.99 ± 0.20 78.78 ± 0.15

Baseline++ [3] 55.03 ± 0.20 78.79 ± 0.15

ProtoNet [9] 53.99 ± 0.20 79.70 ± 0.15

ProtoNet+MCL 58.62 ± 0.20 80.99 ± 0.14

DN4 [6]

VanillaFCN

58.95 ± 0.19 78.01 ± 0.15

FRN [13] 59.71 ± 0.19 74.05 ± 0.15

MCL 60.94 ± 0.20 80.20 ± 0.14

MCL-Katz 61.55 ± 0.20 81.09 ± 0.14

Table S2. Few-shot classifications (%) without episodic meta-
training. All of the comparing methods are evaluated in our unified
framework with the same pre-trained ResNet-12 backbone.

300, 400 and 500. Conv-4 backbone is trained with standard
20-way for 5-shot models and is trained with 30-way for 1-
shot models like [13], while ResNet-12 backbone is trained
with 10-way for the both shots models.

For meta-iNat and tiered-meta-iNat, we train our Conv-4
and ResNet-12 models for 100 epochs using Adam with
initial learning rate 1e-3. We set 0.5 learning rate decay
every 20 epochs. Both Conv-4 and ResNet-12 are trained
with 10-way for both 1-shot and 5-shot models.

F. Cross-Domain Few-shot Classification

We also evaluate on the challenging cross-domain setting
proposed by [3], where models trained on miniImageNet
base classes are directly evaluated on test classes from CUB.
We use the same test class split as in [13] for fair compar-
isons, which is much harder than the test class split in [3].

As shown in Table S1, our MCL outperforms previous
state-of-the-art methods by large margins of 3.9% on the
1-shot task and 5.4% on the 5-shot task, respectively.

G. Evaluation without Meta-training

Given that an increasing number of methods simply use
standard supervised learning to pre-train the feature extractor
and then use their methods directly for evaluation without
meta-training [3, 4], we also evaluate our methods under
this setting with the same pre-trained feature extractor we
used in the Table 1. As shown in Table S2, global feature
based methods are likely to misclassify images under the
extremely 1-shot scenario, where the significant intra-class
variations would inevitably drive the image-level embedding
from the same category far apart. In contrast, dense feature
based methods provide more information across categories
that shows promising performances in that scenario.

Our end-to-end Katz centrality based MCL outperforms
previous methods by a margin of 1.8% and 1.3% on 1-shot
and 5-shot tasks, respectively. It is interested to note that our
MCL plugin help centralize the task-relevant local features

5-way 1-shot 5-way 5-shot

α ≈ 0 (unidirectional) 66.60 ± 0.20 81.76 ± 0.13

α = 0.1 67.13 ± 0.20 83.20 ± 0.13

α = 0.3 67.28 ± 0.20 83.89 ± 0.13

α = 0.5 (MCL-Katz) 67.51 ± 0.20 83.99 ± 0.13

α = 0.7 67.27 ± 0.20 84.05 ± 0.13
α = 0.9 67.41 ± 0.20 83.96 ± 0.13
α = 0.999 (MCL) 67.36 ± 0.20 83.63 ± 0.13

Table S3. Ablation studies on the Katz attenuation factor α on
miniImageNet with VanillaFCN ResNet-12.

β = 5.0 β = 10.0 β = 20.0 β = 50.0

γ = 5.0 66.12 66.15 65.87 65.39
γ = 10.0 67.21 67.20 66.78 66.23
γ = 20.0 67.53 67.36 66.70 66.00
γ = 50.0 67.05 66.77 65.84 65.08

Table S4. Ablation studies of MCL (α = 0.999) on the scaling pa-
rameters γ and β in Eqn.(1) and Eqn.(2), respectively. Experiments
are conducted on 5-way 1-shot miniImageNet with VanillaFCN.

in ProtoNet [9] by a large margin of 4.6% in 1-shot task and
1.2% in 5-shot task without bell and whistles.

H. Ablation on parameters α, γ and β

Ablation on Katz attenuation factor α. Table S3 shows
results with different α in bidirectional random walks. As
discussed in Sec.5, the centrality with large α is more influ-
enced by the endogenous topology while that with small α is
more influenced by the in-degree paths. It could be observed
in Table S3 that, the optimal α differs across various FSL
tasks (that with different shot on different datasets).

In the experiments, we use α=0.999 to approximate
single-mode eigenvector centrality in Eqn.(6) and simply
use α=0.5 to represent general Katz centrality in Eqn.(8).

Ablation on scaling parameters γ and β. Table S4
shows MCL results with different scaling parameters γ and
β. As discussed in Sec.5 that a larger scaling parameter (i.e.,
a smaller temperature in softmax-like random walk probabil-
ity) will lead to a more concentrated eigenvector centrality.
However, a larger scaling parameter would inevitably bias
the meta-training. Thus, there exists a trade-off to select
optimal parameters according to each task.

In the experiments, we find its empirically effective to
select γ and β according to their pre-trained models (similar
to Table S4). In most cases, we use γ=20, β=10 and γ=40,
β=20 for 1-shot and 5-shot tasks, respectively.

I. Additional Plugin Experiments
We have shown that our proposed centrality weighted

pooling has a consistent performance gain (especially in the

Method miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

Baseline [3] 53.99 78.78 67.75 85.23
+MCL 56.21+2.22 80.44+1.66 68.53+0.78 85.75+0.52

Baseline++ [3] 55.03 78.79 61.86 84.31
+MCL 56.93+1.90 79.93+1.14 63.00+1.14 84.61+0.30

ProtoNet [9] 56.50 79.68 64.27 84.01
+MCL 58.62+2.12 80.99+1.30 66.48+2.21 84.83+0.82

MatchingNet [12] 58.41 79.52 68.68 85.16
+MCL 59.85+1.44 80.79+1.27 69.45+0.97 85.49+0.33

R2D2 [2] 59.82 78.97 70.22 85.30
+MCL 60.86+1.04 80.65+1.68 70.64 +0.42 85.84+0.54

MetaOptNet [5] 59.59 79.77 69.55 85.25
+MCL 60.66+1.07 81.27+1.50 70.11+0.55 85.76+0.51

DSN [8] 58.70 79.01 69.13 85.14
+MCL 60.08+1.38 80.66+1.65 69.59+0.46 85.61+0.47

Neg-cosine [7] 58.82 79.63 69.44 84.94
+MCL 60.20+1.38 81.04+1.41 69.85+0.41 85.31+0.37

Table S5. Few-shot classifications (%) before and after applying
centrality weighted pooling. Experiment settings follow Table S2.

extreme 1-shot scenario) over global average pooling on
ProtoNet [9] and RelationNet [10] by concentrating on more
task-relevant local features. Besides Table 1, 2, 4 and S2,
we give additional results in Table S5 to show that MCL
can be easily plugged into those methods that need no extra
parameters except for the feature extractor.

The experiments are conducted by the following rules: all
comparing methods are evaluated with the same pre-trained
backbone ResNet-12 as in Sec.G without meta-training; we
only use centrality weighted pooling to aggregate local fea-
tures from query image as different methods have different
operations on support features; we fixed the parameters γ=20
and β=10 to MCL plugins for all comparing methods.

As shown in Table S5, our proposed centrality plugin
consistently improves the performances of all the global
feature based methods without bells and whistles.

J. Additional Visualization
The additional Grad-CAM visualizations as in Table 5 of

the main paper are presented as follows: Table S6 illustrates
end-to-end MCL-Katz like in Table 5(b). Table S7 illustrates
MCL plugin on ProtoNet [9] like in Table 5(a).

Table S6. Additional Grad-CAM visualizations of MCL-katz on 5-way 1-shot FSL tasks (miniImageNet) with ResNet-12. Formatting
follows Table 5(b): query images are placed in the first column for each task; ground truth support images are placed in the second column;
the four images on the far right column of each task are from the confounding support classes.

Table S7. Additional ProtoNet+MCL Grad-CAM visualizations on 5-way 1-shot FSL tasks (miniImageNet) with ResNet-12. Formatting
follows Table 5(a): query images are placed in the first column for each task; ground truth support images are placed in the second column;
the four images on the far right column of each task are from the confounding support classes. The top row in each task is from ProtoNet
while the bottom row is from ProtoNet+MCL.

References
[1] Arman Afrasiyabi, Jean-François Lalonde, and Christian

Gagn’e. Associative alignment for few-shot image classi-
fication. In European Conference on Computer Vision, pages
18–35. Springer, 2020. 4

[2] Luca Bertinetto, Joao F Henriques, Philip Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Representa-
tions, 2018. 5

[3] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classifi-
cation. In International Conference on Learning Representa-
tions, 2019. 4, 5

[4] Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichan-
dran, and Stefano Soatto. A baseline for few-shot image
classification. In International Conference on Learning Rep-
resentations, 2019. 4

[5] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex
optimization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10657–
10665, 2019. 4, 5

[6] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao,
and Jiebo Luo. Revisiting local descriptor based image-
to-class measure for few-shot learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7260–7268, 2019. 3, 4

[7] Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Ming-
sheng Long, and Han Hu. Negative margin matters: Un-
derstanding margin in few-shot classification. In European
Conference on Computer Vision, pages 438–455. Springer,
2020. 4, 5

[8] Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash
Harandi. Adaptive subspaces for few-shot learning. In CVPR,
pages 4136–4145, 2020. 5

[9] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In NIPS, pages 4077–4087,
2017. 3, 4, 5

[10] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare:
Relation network for few-shot learning. In CVPR, pages
1199–1208, 2018. 3, 5

[11] Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-
Hsuan Yang. Cross-domain few-shot classification via learned
feature-wise transformation. In International Conference on
Learning Representations, 2020. 4

[12] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. Matching networks for
one shot learning. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, pages
3637–3645, 2016. 5

[13] Davis Wertheimer, Luming Tang, and Bharath Hariharan.
Few-shot classification with feature map reconstruction net-
works. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 8012–8021, 2021.
3, 4

[14] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In CVPR, pages 8808–8817, 2020. 3

[15] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
Deepemd: Differentiable earth mover’s distance for few-shot
learning. arXiv e-prints, pages arXiv–2003, 2020. 3

	. Proof of Eqn.(5)
	. Proof of Lemma 1
	. Proof of Eqn.(6)
	. Pseudo codes
	. Implementation details
	. Cross-Domain Few-shot Classification
	. Evaluation without Meta-training
	. Ablation on parameters , and
	. Additional Plugin Experiments
	. Additional Visualization

