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In the supplemental material, we provide analysis of our
approach for fine-grained frame retrieval (Sec. 1) and dif-
ferent training and evaluation strategies (e.g. random ini-
tialization, single model for all activities, individual models
per activity) (Sec. 2- 4). We then present additional ablation
studies regarding the hyper-parameters of the model, back-
bone neural network and the choice of probabilistic distri-
bution for the priors (Sec. 5). Subsequently, we provide im-
plementation details of our approach regarding model archi-
tecture and hyperparameters (Sec. 6) and visualize the em-
bedding space learned through our approach (Sec. 7). We
finally discuss the limitations and broader potential societal
impact of our approach (Sec. 8).

1. Fine-Grained Frame Retrieval

We evaluate our model for the task of fine-grained frame
retrieval. We perform evaluations using the validation sets

Dataset Model AP@5 AP@10 AP@15

Pouring

SAL [5] 84.05 83.77 83.79
TCN [6] 83.56 83.31 83.01
TCC [2] 87.16 86.68 86.54
LAV [4] 89.13 89.13 89.22

VAVA(ours) 90.05 89.92 90.17

Penn Action

SAL [5] 76.04 75.77 75.61
TCN [6] 77.84 77.51 77.28
TCC [2] 76.74 76.27 75.88
LAV [4] 79.13 78.98 78.90

VAVA(ours) 81.52 80.47 80.67

IKEA ASM
No Background

SAL [5] 15.15 14.90 14.72
TCN [6] 19.15 19.19 19.33
TCC [2] 19.80 19.64 19.68
LAV [4] 23.89 23.65 23.56

VAVA(ours) 29.58 28.74 28.48

IKEA ASM
Background

SAL [5] 14.28 14.04 14.10
TCN [6] 17.37 17.03 16.96
TCC [2] 18.03 17.53 17.20
LAV [4] 20.14 19.35 19.21

VAVA(ours) 26.42 25.73 25.80

COIN

SAL [5] 26.83 25.95 25.84
TCN [6] 27.05 26.92 26.59
TCC [2] 28.58 28.05 28.34
LAV [4] 29.39 28.48 28.20

VAVA(ours) 36.53 34.71 34.63

Table 1. Quantitative results for fine-grained frame retrieval.

of Pouring, Penn Action, IKEA ASM and COIN. In par-
ticular, we consider each video from the validation set as
a query video and treat all the remaining videos as a sup-
port set, following previous work [4]. For each frame in
the query video, we retrieve its K most similar frames in
the support set via nearest neighbor search in the embed-
ding space. We report Average Precision at K, that is, the
average percentage of the action label in the query frame,
among all the actions in the K retrieved frames.

As depicted by Table 1, our approach, VAVA, consis-
tently outperforms previous approaches for different values
of K on all the evaluated datasets. These results demon-
strate the effectiveness of our approach in learning fine-
grained features and capturing the details of human actions.

Dataset Model Classification Progress τ

Pouring

SAL [5] 85.86 0.6422 0.7329
TCN [6] 85.98 0.6732 0.7500
TCC [2] 88.59 0.7104 0.7774
LAV [4] 87.70 0.7320 0.7867

VAVA(ours) 88.94 0.7627 0.8003

Penn Action

SAL [5] 64.05 0.2989 0.4145
TCN [6] 60.17 0.1909 0.4260
TCC [2] 65.53 0.4304 0.4529
LAV [4] 67.90 0.3853 0.4929

VAVA(ours) 69.71 0.4572 0.5291

IKEA ASM
No Background

SAL [5] 20.42 - -
TCN [6] 20.45 - -
TCC [2] 22.04 - -
LAV [4] 23.84 - -

VAVA(ours) 26.52 - -

IKEA ASM
Background

SAL [5] 20.83 - -
TCN [6] 21.70 - -
TCC [2] 21.43 - -
LAV [4] 22.05 - -

VAVA(ours) 26.32 - -

COIN

SAL [5] 33.58 - -
TCN [6] 34.61 - -
TCC [2] 34.93 - -
LAV [4] 35.21 - -

VAVA(ours) 40.68 - -

Table 2. Quantitative results for training-from-scratch on all
the benchmarks.
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2. Training-from-Scratch
In our paper, we provide results of our approach using

models initialized with pre-trained weights from ImageNet
classification, just like the baseline models we compare
with [2, 4]. Here, we also provide experiments with mod-
els learned from scratch using a smaller backbone, VGG-
M [1]. We use the same experimental setup with earlier
works [2, 4]. As can be seen in Table 2, VAVA consistently
outperforms the state-of-the-art.

3. Penn Action with All Categories
On the Penn Action dataset, following TCC [2], we eval-

uate the accuracy separately for each activity and report av-
erage performance in our main paper. Following [3, 4], we
also evaluate with a single model trained on all the activities
on this dataset. Table 3 shows results for this experimental
setup. Our model outperforms previous work in this joint
all-activity setting, which demonstrates that our approach is
able to reliably align multiple actions with a single model.

Model Classification Progress τ

SAL [5] 68.15 0.3903 0.4744
TCN [6] 68.09 0.3834 0.5417
TCC [2] 74.39 0.5914 0.6408
LAV [4] 78.68 0.6252 0.6835
GTA [3] 78.90 - 0.7484

VAVA(ours) 80.25 0.6482 0.7620

Table 3. Joint all-action model results on Penn Action.

Activity Actions

Clean Hamster Cage

Remove the hamster from the hamster cage
Remove the toy and paper bed from the hamster cage

Clean toys and hamster cages
Move the toy and paper bed into the hamster cage

Put the hamster back into the hamster cage

Make RJ45 Cable

Strip the insulation
Arrange the separated wire

Cut a certain length
Insert it into the crystal head
Fix it with a crimping pliers

Change Mobile Phone Battery

Heat the back cover of the phone
Pick up the back cover of the phone with the cymbal

Remove the components of the fixed battery
Remove the tape of the fixed battery

Take down the old battery
Put on new tape

Load a new battery
Restore the fixed battery components and the back cover

Attend NBA Skills Challenge

Do the first layup
Dribble in the field

Pass the basketball into the hole at the first time
Shoot towards the basket

Pass the basketball into the hole at the second time
Dribble and lay up

Make Paper Wind Mill

Fold the edges of the paper
Cut along the edges

Fold the squares inward and fix them
Fix the wind mill on the bracket

Replace Hard Disk

Open the laptop rear cover
Remove the old hard disk
Install the new hard disk

Install the laptop rear cover

Table 4. Summary of the major activities and actions for the
evaluation on the COIN dataset.

4. Performance per Activity on COIN
COIN [7] is a large-scale dataset and exhibits large tem-

poral variations involving background frames, redundant
frames and non-monotonic frames. This challenging dataset
has not been used before by earlier work [2,4] for the align-
ment task. On this dataset, we randomly select 6 major ac-
tivities and report average performance in the main paper.
The details of the selected major activities are summarized
in Table 4. For each activity, we randomly select 60% of
the sequences for training and the rest for evaluation. We
present evaluation results for each activity in Table 5. Our
approach, VAVA, outperforms the state-of-the-art methods
on all the activities. The large margin in our improvement
demonstrates the power of our approach in modeling tem-
poral variations, which is particularly pronounced on COIN.

Activity Model Fraction of Labels
0.1 0.5 1.0

Clean Hamster Cage

Supervised Learning 35.04 38.28 40.54
Random Features 30.03 31.11 31.04
Imagenet Features 31.02 33.64 36.14

SAL [5] 35.13 38.68 39.18
TCN [6] 36.23 38.93 40.19
TCC [2] 35.82 38.64 40.11
LAV [4] 32.25 31.94 32.32

VAVA(ours) 43.12 40.74 43.39

Make RJ45 Cable

Supervised Learning 36.74 38.22 49.44
Random Features 30.45 32.01 31.19
Imagenet Features 32.09 34.14 39.02

SAL [5] 36.25 40.6 42.71
TCN [6] 37.49 41.93 42.72
TCC [2] 37.04 40.27 42.51
LAV [4] 38.52 41.98 45.41

VAVA(ours) 45.29 46.16 47.6

Change Mobile
Phone Battery

Supervised Learning 31.91 36.02 39.31
Random Features 30.01 30.26 30.95
Imagenet Features 31.03 31.59 33.17

SAL [5] 34.33 37.59 39.10
TCN [6] 34.35 37.72 38.25
TCC [2] 34.02 36.48 38.17
LAV [4] 32.07 31.64 34.15

VAVA(ours) 37.16 38.47 39.13

Attend NBA
Skills Challenge

Supervised Learning 49.9 56.69 73.85
Random Features 26.01 27.05 27.13
Imagenet Features 33.18 39.17 40.24

SAL [5] 34.35 40.58 41.97
TCN [6] 37.32 40.71 42.3
TCC [2] 38.96 42.42 43.73
LAV [4] 43.63 44.64 45.62

VAVA(ours) 54.96 64.59 66.29

Make Paper
Wind Mill

Supervised Learning 33.07 36.75 52.01
Random Features 30.41 30.95 31.03
Imagenet Features 30.32 34.41 39.02

SAL [5] 35.48 40.29 41.38
TCN [6] 31.92 40.85 42.58
TCC [2] 34.13 41.25 42.27
LAV [4] 38.58 44.58 44.5

VAVA(ours) 45.07 47.81 49.01

Replace Hard Disk

Supervised Learning 35.99 38.44 39.92
Random Features 30.01 30.35 30.94
Imagenet Features 30.27 35.47 36.97

SAL [5] 32.60 37.66 37.60
TCN [6] 31.91 38.24 37.03
TCC [2] 35.26 38.31 37.17
LAV [4] 35.69 38.33 36.84

VAVA(ours) 37.04 39.33 38.14

Table 5. Activity-wise evaluation on the COIN dataset.



5. Additional Ablation Studies and Discussion
Hyperparameters γ, λ1 and λ2. In this section, we
provide additional ablation studies regarding the hyper-
parameters we used in our model, namely, γ in Eq. 17, λ1

and λ2 in Eq. 13. Following the ablation studies in our main
paper (Table 2), we evaluate on the IKEA ASM dataset
with background frames. As shown by Table 6, γ = 0.5,
λ1 = 1.0 and λ2 = 0.1 yield the best performance on
average, we therefore use this setting for the experiments
in our paper. The results also suggest that our approach
produces similar accuracies for different sets of γ, λ1 and
λ2, and, hence, is not sensitive against the choice of hyper-
parameters.

Hyperparameter Value Fraction of Labels
0.1 0.5 1.0

γ
0.1 27.73 28.05 28.42
0.5 29.12 29.95 29.10
1.0 28.20 28.53 28.79

λ1

0.5 28.32 29.03 29.43
1.0 29.12 29.95 29.10
1.5 28.65 28.94 29.31

λ2

0.01 28.08 29.05 29.17
0.1 29.12 29.95 29.10
1.0 28.07 29.12 29.29

Table 6. Ablation for hyper-parameters using IKEA ASM.

Backbone. In this paper, we use ResNet-50 to follow the
exact same setup as previous work for a fair comparison.
To demonstrate that our approach is not limited to a spe-
cific backbone, we ablate with the R3D-18 [8] backbone
and form a single block of 5 consecutive frames, account-
ing for the maximum amount of the memory of our GPU.
We then learn to align the middle frame of the block for
frame-wise alignment on the IKEA dataset. As shown in
Table 7(a), VAVA still outperforms previous work with this
new backbone and the 3D backbone consistently improves
the performance as it provides more contextual information.

Distribution. Instead of GMM, we also experimented
with a flat-top Gaussian distribution as in Eq. 1, where c
is a scale value for normalization and η is a margin value in
which we can allow for temporal variations. We also eval-
uate with Beta distribution as in Eq. 2. We ablate with dif-
ferent hyper-parameters and report the best performances in
Table 7(c). GMM outperforms them and we therefore use it
in our experiments.
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g(x) = c · xα−1(1− x)β−1
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Variance. We also conduct an ablation study on the effect
of different variances. In addition, we build a simple exten-
sion of our model with extra MLP layers on video features

Model Fraction of Labels
0.1 0.5 1.0

SAL 23.61 24.73 26.91
TCN 23.20 24. 93 26.41
TCC 23.84 25.61 27.03
LAV 24.27 26.33 26.61

VAVA 31.76 31.88 32.07

Variance Fraction of Labels
0.1 0.5 1.0

0.52 28.63 28.91 29.05
0.62 29.12 29.95 29.10
0.72 28.49 29.02 28.72

Learned 28.71 29.25 28.84

Distribution Fraction of Labels
0.1 0.5 1.0

flat-top 27.59 28.02 28.24
Beta 27.66 28.18 27.93

GMM 29.12 29.95 29.10

(a) (b) (c)

Table 7.Ablation on (a) backbone, (b) variance and (c) distribution.

that learn the corresponding variance of the distribution. We
report our results on the IKEA dataset in Table 7(b). As can
be seen by the analysis, a larger variance does not necessar-
ily bring better performance as it may degrade the impact
of temporal priors and the learned variance perform slightly
worse than the fine-tuned fixed value as learning the vari-
ance itself is not an easy task, especially without any frame-
wise labels.

Robustness when aligning videos with different dura-
tions. In our approach, we randomly sample equal num-
ber of frame indices and use the sorted indices to extract
frames from two videos. This sampling strategy allows us
to train our model with pairs of videos that have different
lengths and brings in robustness to changes in the speeds
of actions and temporal variations across sequences. This
consequently allows us to reliably align two sequences even
when there is a large difference in their lengths, such as
those of the COIN dataset, on which the sequence length
varies to a large extent, i.e. from 29 to 527 seconds.

Hyperparameter Value

Batch Size 4
Number of frames 40(C,P), 20(PA,IA)

Optimizer ADAM
Learning Rate 1.0× 10−4

Weight Decay 1.0× 10−5

Window Size(δ) 15
γ 0.5
λ1 1.0
λ2 0.1

Table 8. List of hyperparameters. C, P, PA and IA represent
COIN, Pouring, Penn Action and IKEA ASM, respectively.

6. Implementation Details
We follow previous work [2, 4] and use the same back-

bone network for a fair comparison. We provide a list of
values for our hyper-parameters in Table 8. and summarize
our network architecture in Table 9.

7. Visualization
t-SNE Visualization. We present an example of t-SNE [9]
visualization of the embeddings in Fig. 1. Frames with the
same border color are sampled from different time-steps in



Model Layer Output Size Parameter

Base Network

conv1 112× 112× 64
7× 7, 64, stride 2

3× 3 max pool, stride 2

conv2 56× 56× 256

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3 28× 28× 512

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

conv4 14× 14× 1024

 1× 1, 256
3× 3, 256
1× 1, 1024

× 3

Embedder Network

Temporal Stacking 1× 14× 14× 1024 Stack 1 context frame features in time axis

conv5 1× 14× 14× 512

[
3× 3× 3, 512
3× 3× 3, 512

]
× 1

Spatio-temporal Pooling 512 Global 3D Max-Pool

fc6 512

[
512
512

]
× 1

Embedding 128 128

Table 9. Model architecture in our experiments. The network produces an embedding for each frame. We show different network
parameters inside the square brackets using the following formalism: (1) [n× n, c] refers to 2D Convolution filter size of n and the
number of channels of c; (2)[n× n× n, c] refers to 3D Convolution filter size of n and the number of channels of c; (3) [c] refers to c
channels in a fully-connected layer.

Figure 1. Embeddings. We visualize the embeddings with t-SNE [9] using videos from the ‘baseball pitch’ action of Penn Action.

the same video. The visualization depicts how the embed-
dings change as an action is being carried out. As depicted
by Fig. 1, our approach not only can align actions from dif-
ferent videos but also can capture the appearance and mo-
tion variations, which is crucial for fine-grained understand-
ing of actions.

Alignment. We further provide an accompanying demo
video (”demo.mp4”) which shows the capability of our ap-
proach, VAVA, in reliably aligning two complex video se-
quences on all the benchmarks. Even though there are
heavy temporal variations and appearance changes across
sequences, our approach is still able to align them without
using any frame-wise labels.

8. Discussion

Limitations and Future Work. Previous work on repre-
sentation learning by sequence alignment [2,4] requires two
videos with the same major activity using a weak supervi-
sion setting. To have a fair a comparison against them, we
also follow the same setup. While this is a limitation of the
existing approaches and our method, one potential solution
to this problem is to leverage a pre-trained action recog-

nition model for determining if the two videos contain the
same major activity, and, only then, to use alignment across
those two sequences for fine-grained action understanding.

Although we significantly outperform earlier approaches
in downstream tasks on all the datasets, the accuracy num-
bers on the IKEA ASM and COIN datasets suggest that
further improvement is required for practical deployment
of this technology. One straightforward way to achieve
higher accuracy could be to use a stronger backbone net-
work that captures temporal contextual information. While
we use a ResNet-50 backbone to have a fair comparison
against [2, 4], future work will examine the influence of
different backbone networks on the accuracy of sequence
alignment and downstream tasks.

Societal Impact. Sequence alignment and fine-grained ac-
tion understanding are important for applications in proce-
dure learning and robot imitation learning, which has many
beneficial use cases in AR-based task guidance, assistive
technologies for handicapped people and industrial automa-
tion. However, it can also be used for monitoring peo-
ple’s daily activities and cause privacy issues, therefore it
requires mindful deployment of technology.
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