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In this supplementary material, Sec. 1 illustrates the de-
tails of the algorithm. Sec. 2 and Sec. 3 describe the detailed
architecture and experimental settings, respectively. Sec. 4
provides the complexity analysis of trajectory-aware atten-
tion in TTVSR. Sec. 5 analyzes the limitations of TTVSR.
Finally, Sec. 6 shows more comparison results.

1. Algorithm Details

In this section, we illustrate the details of the algorithm.
It includes the pseudocode of the entire algorithm, the de-
tailed analyzes of the proposed cross-scale feature tokeniza-
tion module, and location map updating mechanism in our
TTVSR.
Algorithm pseudocode. As shown in Alg. 1, we describe
our proposed TTVSR in the form of pseudocode. Besides,
we follow previous works [1, 2] to adopt a bidirectional
propagation scheme, where the features in different frames
can be propagated backward and forward. For clarity, in
this algorithm, we only show the process of forward propa-
gation, and the process of backward propagation is similar
to forward propagation.
Cross-scale feature tokenization. As discussed in the
main paper, in addition to the more complex motion in the
long-range sequence, at the same time, the contents in se-
quences have the distinct scale changing as it moves. The
use of texture from a larger scale often helps to recover more
detailed texture on a smaller scale. Therefore, to adapt to
the changes of different scales, we propose the cross-scale
feature tokenization before trajectory-aware attention to ob-
tain the unified features from the multi-scale. As shown in
Fig. 1, we first use the successive unfold and fold operations
to expand the receptive field of features, which capture fea-
tures with more textures on a larger scale. Then, features
of different scales are sampled to the same one by a pool-
ing operation, which is used to unify features from different
scales. Finally, the features are split by unfolding operation
to obtain the output tokens. It is noteworthy that this pro-
cess can extract features of the whole temporal sequence in
parallel, and obtain features of larger scales without adding

Algorithm 1 The detailed algorithm describe of TTVSR.

Input: ILR: {ItLR, t ∈ [1, T ]}; T : the length of sequence; Linit:
initialization by uniform discretization; H and W : the height
and width of the feature maps; ϕ(·) and φ(·): embedding net-
works; S(·): spatial sampling operation; R(·): reconstruction
network. P(·): pixel-shuffle. U(·): upsampling operation.
H(·): motion estimation network with parameter θ and an av-
erage pooling operation. Atraj(·): trajectory-aware attention.

Output: ISR: {ItSR, t ∈ [1, T ]};
1: V = {};
2: L = {};
3: for t = 1; t <= T ; t++ do
4: Ot = H(ItLR, I

t−1
LR ; θ);

5: L = S(L, Ot);
6: L add Linit;
7: Q = ϕ(ItLR) = {qLt

m,n
,m ∈ [1, H], n ∈ [1,W ]};

8: K = ϕ(ILR) = {kLt′
m,n

,m ∈ [1, H], n ∈ [1,W ], t‘ ∈
[1, t− 1]};

9: V = φ(ILR) = {vLt′
m,n

,m ∈ [1, H], n ∈ [1,W ], t′ ∈
[1, t− 1]};

10: Fatten = R(Atrajt,m,n(qLt
m,n

, kLt′
m,n

, vLt′
m,n

))

11: V add Fatten (the process of obtaining Fatten can be rep-
resented as φ);

12: ItSR = P(Fatten) + U(ItLR)
13: end for

Input feature

Output tokens

pooling

Figure 1. An illustration of the cross-scale feature tokenization.

additional parameters unlike other tasks [6, 15].
Location map updating. As discussed in the main paper,
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Table 1. Model Params and Runtime analysis.

Method #Params Runtime
Flow Estimator 1.4M 7.0ms
Feature Extraction 0.4M 0.1ms
Cross-scale Feature Tokenization 0.0M 8.0ms
Trajectory-aware Attention 0.1M 79.6ms
Reconstruction Network 4.8M 28.6ms

TTVSR Total 6.7M 142ms
MuCAN [5] 13.6M 1,202ms
BasicVSR [1] 6.3M 63ms
IconVSR [1] 8.7M 70ms

the location maps will change over time. We denotes the
updated location maps as ∗Lt and provides a more detailed
and formulated description in this section.

When changing from time T to time T+1, first, based on
Equ. 7 in the main paper, ∗LT+1

m,n represents the coordinate
at time T+1 of a trajectory which is ended at (m,n) at time
T + 1, which can be expressed as:

∗LT+1
m,n = (m,n). (1)

Then we update the existing location maps
{L1

m,n, · · · ,LT
m,n}. To build the connection of tra-

jectories between time T and time T + 1, we introduce a
lightweight motion estimation network which computes a
backward flow OT+1 from IT+1

LR to ITLR. This process can
be formualted as:

OT+1 = H(IT+1
LR , ITLR; θ), (2)

where H(·) is composed of the motion estimation network
with parameter θ and an average pooling operation. The av-
erage pooling is used to ensure that the output of the motion
estimation is the same size as Lt.

Finally, we get the updated coordinates in location map
Lt by interpolating between its adjacent coordinates:

∗Lt = S(Lt, OT+1), (3)

where S(·) represents the spatial sampling operation on ma-
trix Lt by spatial correlation OT+1 (i.e., grid sample in
PyTorch). Thus far, we have all the location maps for time
T + 1.

2. Details of Architecture and Runtimes

In this section, we will illustrate the detailed architecture
and runtimes of TTVSR.
Architecture. We follow IconVSR [1], the feature extrac-
tion network uses five residual blocks, which are part of em-
bedding operation ϕ(·). The feature reconstruction network
R(·) uses 60 residual blocks, which are part of embedding
operation φ(·). The channel number of feature is set to 64.

Runtimes. As shown in Tab. 1, we analyze the parameter
size and runtime of each component in TTVSR. The run-
time is computed on one LR frame with the size of 180×320
and ×4 upsampling, and all models are conducted on an
NVIDIA Tesla V100 GPU.

As shown in Tab. 1, our method is much lighter and faster
than other attention-based methods (e.g., MuCAN [5],
which is the SOTA attention-based method), this is thanks
to our efficient design of trajectory-aware attention. Com-
pare with other methods without attention mechanisms,
TTVSR achieves higher results with the smaller parameters
size and comparable FLOPs (as shown in main paper Ta-
ble 3). While it’s worth noting that TTVSR is slower than
IconVSR [1]. This is because the runtime highly depends
on the code implementation and hardware platforms. Spe-
cific to our case, the attention mechanism contains a lot of
small matrix multiplications which limits our method to run
at the high efficiency (as shown in the fourth row of Tab. 1,
the time used to calculate attention is more than half of the
total time). However, we believe that with the optimization
of code and hardware, TTVSR can achieve the comparable
runtime to IconVSR [1] as demonstrated by FLOPs which
is independent of hardware.

3. More Experimental Settings
Datasets. We use the REDS [9] and Vimeo-90K [11]
datasets to construct our training data. For REDS [9], we
apply the MATLAB bicubic downsample (BI) degradation
on REDS4 [9] to evaluate TTVSR. For Vimeo-90K [11],
we use the Gaussian filter with a standard deviation of
σ = 1.6 and downsampling (BD) degradation, and use
Vid4 [7], UDM10 [12] and Vimeo-90K-T [11] as test sets
along with it.
Settings. To leverage the information of the whole se-
quence, we follow previous works [1, 2] to adopt a bidirec-
tional propagation scheme. In the process of bidirectional
propagation, the same parameters are shared, and the final
feature at each frame is obtained by cascading bidirectional
output features.

For REDS [9], we use sequences with a length of 50
as inputs, and loss is computed for the 50 output frames.
For Vimeo-90K [11], we augment the sequence by flipping
twice to extend the length of the sequence to 28 as input, and
the inference results on Vimeo-90K-T [11] are the average
of output frames derived from the same frame extension.

The Charbonnier penalty loss [4] is applied on whole se-
quence between the ground-truth and restored SR frame. It
can be formualted as:

ℓ =
1

T

T∑
t=1

√
∥ItHR − ItSR∥2 + ε2, (4)

where ε = 1 × 10−8. T denotes the sequence length. All



Table 2. Quantitative comparison (PSNR↑, SSIM↑, and LPIPS↓) on the REDS4 [9] dataset for 4× video super-resolution. The results are
tested on RGB channels. Red indicates the best and blue indicates the second best performance (best view in color).

Method Bicubic RCAN [14] CSNLN [8] TOFlow [11] DUF [3] EDVR [10] MuCAN [5] BasicVSR [1] IconVSR [1] TTVSR
PSNR 26.14 28.78 28.83 27.98 28.63 31.09 30.88 31.42 31.67 32.12
SSIM 0.7292 0.8200 0.8196 0.7990 0.8251 0.8800 0.8750 0.8909 0.8948 0.9021
LPIPS 0.3395 0.2716 0.2668 0.2969 0.2911 0.2225 0.2112 0.1979 0.1890 0.1786

experiments are conducted on a server with Python 3.9, Py-
Torch 1.9, and 8×NVIDIA Tesla V100 GPUs.

4. Complexity Analysis
By introducing trajectories into Transformer in our pro-

posed TTVSR, the attention calculation on K and V can
be significantly reduced because it can avoid the compu-
tation on spatial dimension compared with vanilla vision
Transformers. In this section, we analyze the complexity of
trajectory-aware attention calculation in detail.

Take the attention process of one token in Q as an exam-
ple, when a sequence of length T and size C ·H ·W is input
as K, the size of tokens and the number of tokens can be ex-
pressed as C ·Dh ·Dw and T · H

Dh
· W
Dw

, respectively. The
similarity of attention mechanisms in vanilla vision Trans-
former has a computational cost of:

(T · H

Dh
· W

Dw
) · (C ·Dh ·Dw). (5)

The similarity of trajectory-aware attention mechanisms
in TTVSR has a computational cost of:

(T · 1 · 1) · (C ·Dh ·Dw), (6)

here, the attention calculation on spatial dimension is
avoided, so the number of tokens in the attention calcula-
tion is reduced from (T · H

Dh
· W
Dw

) to (T · 1 · 1).
By expressing attention as the multiplication of tokens,

we get a reduction in computation of:

(T · 1 · 1) · (C ·Dh ·Dw)

(T · H
Dh

· W
Dw

) · (C ·Dh ·Dw)
=

1

( H
Dh

· W
Dw

)
. (7)

In general, by introducing trajectories into Transformer,
the computational complexity of attention is reduced by
( H
Dh

· W
Dw

) times, and provides a more efficient way to en-
able our TTVSR can directly leverage the information from
a distant video frame.

5. Limitation Analysis
In this section, we discuss the limitations of TTVSR.

Length of sequence. The design of TTVSR is to fully
utilize the temporal information of more frames in the se-
quence, so the performance improvement is limited for

shorter sequences. (e.g., each sequence contains seven
frames on Vimeo-90K [11]). Therefore, to enable long-
range sequence capability, for Vimeo-90K [11], we aug-
ment the sequence by flipping twice to extend the length of
the sequence to 28 as input. However, due to the limitation
of original sequences, the improvement is still limited. We
will add relevant features on spatial dimensions to further
enhance the utilization of spatial information in the model.
Training Time. To make the model have the ability to
model long-range sequences, we input the sequences as
long as possible during training. However, longer se-
quences often lead to longer training times. Next, we will
optimize the training process so that TTVSR can speed up
the training process with long sequences input.
GPU memory. According to the model design, TTVSR
needs to store the features of each moment during inferring
and training. It inevitably takes up GPU memory. There-
fore, the next step is to design an adaptive feature storage
mechanism dynamically and selectively retain the useful
features for reconstruction.

6. More Results
In this section, to further verify the effectiveness of our

method, we compare the perceptual results and show more
comparison results among the proposed TTVSR and other
advanced methods on four different benchmarks.
Perceptual results. We use LPIPS [13] as a widely used
metric to evaluate perceptual quality. Results, shown in
the following Additional Tab. 2, demonstrate that TTVSR
is still highly superior in the perceptual metrics.
Visualization results. We show more comparison results
among the proposed TTVSR and other advanced methods
on four different benchmarks. The results on REDS4 [9],
Vid4 [7], UDM10 [12] and Vimeo-90K-T [11] are shown
in Fig. 2-3, Fig. 4, Fig. 5 and Fig. 6-7, respectively.
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Figure 2. Visual results on REDS4 [9] for 4× scaling factor. The frame number is shown at the bottom of each case. Zoom in to see better
visualization.
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Figure 3. Visual results on REDS4 [9] for 4× scaling factor. The frame number is shown at the bottom of each case. Zoom in to see better
visualization.
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Figure 4. Visual results on Vid4 [7] for 4× scaling factor. The frame number is shown at the bottom of each case. Zoom in to see better
visualization.
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Figure 5. Visual results on UDM10 [12] for 4× scaling factor. The frame number is shown at the bottom of each case. Zoom in to see
better visualization.
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Figure 6. Visual results on Vimeo-90K-T [11] for 4× scaling factor. The frame number is shown at the bottom of each case. Zoom in to
see better visualization.
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Figure 7. Visual results on Vimeo-90K-T [11] for 4× scaling factor. The frame number is shown at the bottom of each case. Zoom in to
see better visualization.
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