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A. Feature Extraction
A.1. Multi-modality Features

Geometry embedding. We derive the geometry feature
of each text segment bounding box as

(
x
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W , h

H

)⊤
,

where W and H are the width and height of the table image.
(x, y) represents the center point of the box while height h
and width w correspond to its short side and long side re-
spectively. Then a d-dimension Fully-Connected (FC) layer
is applied on the above vectors to obtain the geometry em-
beddings FG = {g1,g2, ...,gN} ∈ RN×d.

Appearance embedding. We employ ResNet18-based
CNN [7] as backbone to extract whole table image fea-
ture. In detail, the backbone consists of conv1 to conv2 2
of ResNet18 followed by three convolutional layers of size
3× 3× 64. Hereafter, the output of backbone is applied by
the RoI Align [6] in terms of text segment bounding boxes.
After passing a FC layer with d dimensions, appearance em-
beddings FA = {f1, f2, ..., fN} ∈ RN×d are obtained.

Content embedding. First, we embed corresponding text
of each text segment bounding box in distributional space
via word2vec [2]. Then, one convolutional layer with
7 × 1 × d kernel size and 1 stride is applied to model
text sequential feature as content feature embeddings FC =
{t1, t2, ..., tN} ∈ RN×d.

A.2. Ablation Study of Mutil-modalities

As shown in Tab. 1, we observe that among the three
modalities, “G” plays a dominant role, followed by “A”, and
finally “C”. The proposed model leveraging all three modal-
ities can achieve impressive progress under all evaluation
metrics. In addition, we also explore the attention weights
of individual modality. That is, the attention weights of “A”
and “G” tend to be grid-like, indicating that the model fo-
cuses on the spatial position of the row or column in global
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range. And the attention weights of “C” are inclined to em-
phasize on local successive segment bounding boxes. To
sum up, the inductive biases of different modalities are of
large disparency.

Input Modality Setup-B
A G C P R F1
✓ ✗ ✗ 89.8 47.9 62.5
✗ ✓ ✗ 97.9 97.7 97.8
✗ ✗ ✓ 70.5 39.0 50.2
✓ ✓ ✗ 98.6 98.3 98.4
✗ ✓ ✓ 98.0 95.0 96.5
✓ ✗ ✓ 87.6 89.3 88.4
✓ ✓ ✓ 98.8 99.3 99.0

Table 1. Ablation studies of multi-modalities on SciTSR-COMP
dataset. “A”, “G” and “C” stand for “appearance”, “geometry” and
“content” modality respectively.

B. Multi-head Attention

We build the core collaborative block of our method
upon Multi-head Attention (MHA) [17] module. Here,
we briefly introduce it as preliminary knowledge. Given
queries Q, keys K and values V, MHA is defined as:

MultiHead(Q,K,V) = Concat(H1,H2, ...,Hh)W
∗,

Hi = Attention(QWQ
i ,KWK

i ,VWV
i ), i ∈ {1, 2, ..., h},

Attention(Q,K,V) = softmax(
QK⊤
√
dk

)V,

where dk is the dimension of keys while h is the head num-
ber. WQ

i ∈ Rdm×dk ,WK
i ∈ Rdm×dk ,WV

i ∈ Rdm×dv

and W∗
i ∈ Rhdv×dm are projection matrices separately. Es-

sentially, the attention process can be regarded as “memory
accessing” procedure.



C. Training Strategy
C.1. Design of Loss Function

The binary classification loss is widely applied in previ-
ous graph-based works of table structure recognition (TSR).
Particularly, we train our proposed Neural Collaborative
Graph Machines (NCGM) in an end-to-end way to sat-
isfy both the contrastive objective and to predict belonging
classes of the output embedding pairs. Given a pair of col-
laborative graph embeddings ({e(a), e(b)}) and correspond-
ing concatenated vector u(a,b), we define the multi-task loss
function as:

L = Lcell + Lcol + Lrow,

L∼ = λ1Lclass + λ2Lcon,

Lcon =
∥∥∥e(a) − e+(b)

∥∥∥2
2
+max

{
0, α−
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∥∥∥2
2

}
,

Lclass = −log(P (z = c|u(a,b))),

P (z = c|u(a,b)) =
exp(Scu(a,b))∑
k exp(Sku(a,b))

, c ∈ {0, 1},

where L∼ represents Lcell, Lcol or Lrow, corresponding to
cell, column and row relationship loss. Lcon is contrastive
loss in which e+(b) and e−(b) are the positive and negative
pair of e(a) respectively. The margin parameter α is set to
1. Correspondingly, Lclass is the standard softmax loss in
terms of u(a,b). z is the predicted class for the input pairs,
and S is the weight matrix used in the softmax function,
and Sc and Sk represent the c-th and k-th column of it, re-
spectively. c = 1 denotes the concatenated pairs belong
to the same cell/column/row, and otherwise c = 0. They
are combined by weight parameters λ1 and λ2. Consider-
ing memory efficiency, we also introduce Monte Carlo sam-
pling for constructing collaborative graph embedding pairs
in the training phase, which is similar to [12]. For infer-
ence, the sampling is not performed and we construct all
collaborative graph embeddings as pairs.

C.2. Forward Process

For clarity, the detailed forward process of NCGM is
shown in Alg. 1. Note, the symbol with superscript “∼” de-
notes it is derived from “appearance”, “geometry” or “con-
tent” modality. And the symbol with subscript “∼” repre-
sents it belongs to one of “cell”, ”column” or “row” rela-
tionships. The sample size S of Monte Carlo sampling is
set to 10 in the training phase.

C.3. Ablation Study of Loss

We also perform experiments to evaluate the effect of
different loss functions. For the sake of fairness, all mod-
els with different loss settings are trained with the same
backbone model and training data. As shown in Tab. 2,

Algorithm 1 NCGM pseudo code.
Input: T, GT∼; // T denotes input table elements. GT∼

(GT∼ ∈ {GTcell,GTrow,GTcol}) represents the
Ground Truth of different relationships.

Output: Fpred
∼

/* Extract features by Compressed Multi-head Attention. */
Function CMHA(Q, K, V):

Y ← MHA(Q, MC(K), MC(V))
return Y

/* Ego Context Extractor. */
Function ECE(C∼

(l-1)):
Q ← C∼

(l - 1)
K ← V ← H∼

Θ ← hΘ(xi, xj)
C∼

(l) ← CMHA(Q, K, V)

return C∼
(l)

/* Cross Context Synthesizer. */
Function CCS(MC

(l-1), C
A
(l), C

G
(l)):

Q ← MC
(l-1)

K ← V ← CA
(l) U⃝CG

(l)

MC
(l) ← CMHA(Q, K, V)

return MC
(l)

Function Main:
F∼ ← Extract appearance, geometry and content fea-

tures from T.
/* Initialization. */
C∼

(0) ← M∼
(0) ← F∼

/* Generate collaborative embeddings by NCGM. */
for l = 1, 2, 3 do

CA
(l) ← ECE(CA

(l-1))

CG
(l) ← ECE(CG

(l-1))

CC
(l) ← ECE(CC

(l-1))

MA
(l) ← CCS(MA

(l-1), C
G
(l), C

C
(l))

MG
(l) ← CCS(MG

(l-1), C
A
(l), C

C
(l))

MC
(l) ← CCS(MC

(l-1), C
A
(l), C

G
(l))

E ← MA
(3) +⃝MG

(3) +⃝MC
(3)

/* Construct pairs. */
U ← Pairing(E)
if train then

/* Monte Carlo sampling. S is the sample size. */[
US ;GTS

∼

]
← Sampling([U;GT∼] , S)

/* Separately compute cell/col/row loss. */
L∼ ← Loss(US , GTS

∼)
Backward.

else
/* Separately predict cell/col/row relationships. */
Fpred

∼ ← Classify∼(U)

return



Loss Function Setup-B
Lclass Lcon P R F1

✓ ✗ 98.9 98.6 98.7
✗ ✓ 94.4 92.1 93.2
✓ ✓ 98.8 99.3 99.0

Table 2. Ablation studies of losses on SciTSR-COMP dataset.
Lcon and Lclass are contrastive loss and binary classification loss
respectively.

we observe that the model trained by binary classification
loss Lclass outperforms the one trained by contrastive loss
Lcon, while the combination ofLclass andLcon can achieve
better performance than either of the two. We attribute this
to the extra regularization provided by contrastive loss, that
makes the model pay more attention to hard negative pairs.
As a consequence, our method can learn more discrimina-
tive representations of row, column or cell relationships.

D. Post-processing
For a fair comparison with other methods, we perform

post-processing on the results of our method. As opposed
to pre-processing, post-processing aims to convert the adja-
cency matrix containing relationships to spanning informa-
tion either in “XML” format for evaluating physical struc-
ture recognition or “HTML” format for evaluating logical
structure recognition respectively, which is shown in Fig. 1.

Post-process for physical structure recognition. We
also take the row relationship for example. First of all, all
boxes are sorted by their y coordinates of top left points to
generate their indexes (represented in blue). For each box
vi, the row belonging list is generated according to row ad-
jacency matrix. Afterwards, the spanning information in
“XML” format can be obtained. Here, we define the ta-
ble box row index according to the boundaries of boxes, as
illustrated by the red numbers in Fig. 1. In detail, boxes be-
longing to the same row belonging list are assigned with the
same starting-row and ending-row indexes. Similarly, we
can also obtain the spanning results from column adjacency
matrix. Finally, an XML file is created with the extracted
spanning information along with bounding box coordinates
and contents.

Post-process for logical structure recognition. As for
the datasets (i.e., TableBank [9] and PubTabNet [18]) in
which GTs are in the form of HTML sequences, the evalu-
ation protocol put more emphasis on correctly recognizing
the logical structure of tables. We can also convert the ad-
jacency matrix of relationship to HTML tag sequences ac-
cording to the belonging list.

E. Datasets
E.1. Datasets for Experiments

We perform large-scale experiments on various bench-
mark datasets as summarized in Tab. 3. Among, ICDAR-
2013 [5], ICDAR-2019 [4], UNLV [15], WTW [11], Sc-
iTSR [1] and SciTSR-COMP [1] are employed for physi-
cal structure recognition, while TableBank [9] and PubTab-
Net [18] are adopted for evaluating logical structure recog-
nition performance.

In particular, it should be noted that there exists no train-
ing set in ICDAR-2013 [5] and UNLV [15] datasets, so we
extend the two datasets to the partial versions (i.e., ICDAR-
2013-P and UNLV-P). Concretely, we randomly split each
dataset into five folds, of which four folds for training and
the left one for testing. The random splits are performed
ten rounds for computing averaged performance, which is
similar to TabStruct-Net [14].

For more clarity, we also count the number of text seg-
ment bounding boxes and tables in every table image for
different datasets in Tab. 3 (“-” means no training set pro-
vided).

Dataset
Train Test

Image Content C-Box T-BoxTable
(Amt)

Box
(Avg)

Table
(Amt)

Box
(Avg)

IC13 - - 158 93 ✓ ✓ ✗ ✓

IC13-P 124 92 34 96 ✓ ✓ ✗ ✓

IC19 600 314 150 359 ✓ ✗ ✓ ✗

UNLV - - 558 77 ✓ ✗ ✓ ✗

UNLV-P 446 84 112 43 ✓ ✗ ✓ ✗

WTW 10970 101 3611 96 ✓ ✗ ✓ ✗

Sci. 12000 47 3000 48 ✓ ✓ ✗ ✓

Sci.-C 12000 47 716 74 ✓ ✓ ✗ ✓

Sci.-C-A 24000 47 1432 74 ✓ ✓ ✗ ✓

TableBank 145K 50 1000 49 ✓ ✗ ✗ ✗

PubTabNet 339K 72 114K 74 ✓ ✓ ✗ ✓

Table 3. Statistics of the datasets our experiments performed on.
“Amt” and “Avg” denote “Amount” and “Average” separately. “-
P” means partial dataset and “-A” represents augmented dataset
by distortion. “IC13”, “IC19”, “Sci.” and “Sci.-C” are short
for “ICDAR-2013”, “ICDAR-2019”, “SciTSR” and “SciTSR-
COMP” individually. “C-Box” and “T-Box” stand for “cell bound-
ing boxes” and “text segment bounding boxes” respectively.

E.2. Processing on Inconsistent Annotation Levels

Pre-process for bounding boxes. One major challenge
of performing comparisons on different datasets lies in the
inconsistency of annotation levels on the bounding boxes.
As shown in Tab. 3, ICDAR-2019 [4], UNLV [15] and
WTW [11] datasets have ground truth (GT) bounding boxes
of cell, while ICDAR-2013 [5] and SciTSR [1] datasets take
text segment bounding boxes as GT annotations. In our
method, we regard text segment bounding boxes as table
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Figure 1. Post-processing of our proposed NCGM.

elements. Therefore, we do some processing to eliminate
the inconsistency in annotation levels.

In detail, we convert the cell bounding boxes to the
text segment ones according to OCR results in the train-
ing stage. For the text-segment-level datasets (i.e., ICDAR-
2013 [5] and SciTSR [1]), we consider the original boxes
and text contents as model input directly, which are ex-
tracted by parsing GT files. To unify the input format, for
the cell-level datasets (i.e., ICDAR-2019 [4], UNLV [15]
and WTW [11]), the text-segment-level boxes with contents
are generated by the OCR results of Tesseract [16]. Note
that an original cell-level box may contain more than one
text-segment-level boxes, which have the common row and
column spanning information (i.e., starting-row, starting-
column, ending-row and ending-column indexes) of the cor-
responding cell-level box. During the testing time, however,
we still keep the original cell-level or text-segment-level
boxes as GTs instead of the pre-processed ones in Setup-
B, which ensures consistency while comparing our method
against previously published ones. Especially, we take the
result boxes of detection in FLAG-Net [10] and the OCR
results of Tesseract [16] as inputs for fair comparison in
Setup-A.

Pre-process for relationships. In order to provide the
uniform GT of adjacency relationships (GT∼ in Alg. 1) for
the model’s training phase, we convert the spanning infor-
mation of table’s rows and columns in various formats into
the adjacency matrices of cell, row and column, which rep-
resent three adjacency relationships for the table elements.
Take the row adjacency matrix for example, if the i-th and
j-th boxes belong to the same row relationship, the value
located at (i, j) in adjacency matrix is assigned to 1, other-
wise to 0. In this way, we can construct the row adjacency
matrix to represent the relationship of row. The adjacency
matrices of cell and column are also generated in the similar
way.

E.3. Synthesizing Method

To further investigate the capacity of TSR methods under
more challenging scenes, we augment existing datasets with
the following two kinds of image distortion algorithms to
simulate distractors brought by capture device, which are
visualized in Fig. 2.

(a) Original Image (b) Distortion 1 (c) Distortion 2

Figure 2. Images from SciTSR-COMP dataset applied by distor-
tion algorithms.

Distortion 1. The first disortion is based on perspective
transformation algorithm, which projects the table image to
a new view plane according to the mapping matrix, as is
shown in Fig. 2(b).

Distortion 2. For the second kind of distortion, we em-
ploy a algorithm based on the quadratic Bézier curve [8] to
augment the datasets, which can be defined as:

B2(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2, t ∈ [0, 1],

where P0, P1 and P2 denote three control points of the
Bézier curve.

𝑃! 𝑃"

𝑃# 𝑙

𝑏

𝑀 𝑙!

Figure 3. Determination of control points in Bézier curve.



Concretely, for each row of the image, we generate a
quadratic Bézier curve applied on it to implement pixel-
level distortion. There are three main steps to determine the
control points of quadratic Bézier curve. As shown in Fig. 3,
we first randomly initialize the axis line l (the red line) and
the offset b. Next, each row of the image is regarded as l0,
and its starting point is deemed as the control point P0 while
ending point as P2. Besides, the control point P1 is located
at a position offset from M (the intersection point between
l0 and l) by b. Through this way, the quadratic Bézier curves
are determined by the control points, which are applied on
each row of image pixels to perform distortion. It is worth
mentioning that the blank pixels generated in the distortion
process are interpolated by neighbouring pixels.

F. Computational Complexity

To further compare the computational complexity of ex-
isting various methods of table structure recognition, we
summarize the model sizes and the inference operations of
different models in Tab. 4. Since LGMPA [13] and Cycle-
CenterNet [11] recover table structure based on heuristic
rules after detecting cells, which is infeasible to perform the
comparison between them and our method, we do not report
them in Tab. 4. In particular, note that TabStruct-Net [14]
and FLAG-Net [10] are only tested for structure recogni-
tion, so we do not count the parameters and operations of
cell detection for a fair comparison.

Although the parameters and FLOPs of NCGM are
larger than FLAG-Net [10], the performance of our method
increases average F1-score by a large margin especially un-
der challenging scenarios (e.g., WTW and SciTSR-COMP-
A). The reasons for increasing computational complexity
is probably because of the individual operations on multi-
ple modalities in our method. Compared with TabStruct-
Net [14], NCGM can achieve better performance with less
parameters and similar computational budgets. Moreover,
the model size and FLOPs of GraphTSR [1] are the small-
est among the compared methods, but it only utilizes the
box coordinates as input to recognize table structure, which
cannot achieve comparable performance than other meth-
ods. We consider to optimize the computational complexity
and size of model without performance degradation in the
future work.

G. Jensen-Shannon Divergence

We in this work introduce the Jensen-Shannon Diver-
gence [3] to measure the average diversity of attention maps
in CCS, which is defined as:

JSD = H(
1

n

n∑
i=1

Pi)−
1

n

n∑
i=1

H(Pi),

Method Setup-B
#Param FLOPs

GraphTSR [1] 7.0e-4 1.8e-4
DGCNN [12] 0.8 4.1
TabStruct-Net [14] 4.7 11.9
FLAG-Net [10] 1.9 3.3
NCGM 3.1 12.7

Table 4. Computational complexity comparison of different meth-
ods. #Param denotes the number of parameters (M), while FLOPs
are the numbers of FLoating point OPerations (G). The number of
input table’s text segment bounding boxes is 42.

where Pi is the vector of attention weights assigned by one
head to i-th node in the graph, and H is the Shannon en-
tropy. The trends of attention diversity variance in different
blocks for different modalities with and without CCS are all
shown in Fig. 4.

H. Qualitative Results

Fig. 5 demonstrates more qualitative results of structure
recognition on benchmark datasets. The figures show the
generalization ability of our proposed NCGM which is able
to correctly recognize various types of table structures. Es-
pecially for more challenging cases, Fig. 5(f)-(g) verify that
our method can not only handle regular tables but also ro-
bustly recognize distorted ones, which is more applicable in
realistic scenarios.

We also show the failure cases of our method in Fig. 6.
As one can see, the table that impairs the performance of
our algorithm is the nested table, which contains severe mis-
alignment of row and column. To put it in another way, it
is ambiguous to judge whether certain boxes belong to the
same row or column. The ambiguity also incurs inadapt-
ability of existing evaluation protocols in either logical or
physical format requiring the rigid alignment of box bound-
ary in row or column relationships. In the future work,
we will investigate this problem and attempt to attack it by
introducing more robust representation of the nested table
structure, such as tree structure.

I. Broader Impact

Table elements have natural graph structure. Learning
collaborative patterns from graph data of multiple modal-
ities offers many potential applications and opportunities
as graph data in multiple modalities naturally co-occur and
have implicit relationships. Our model can be applied in
many specific verticals ranging from financial area to med-
ical area including large-scale heterogeneous table data,
such as financial documents, medical examination reports
and etc. And we focus on the impact our model might have
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Figure 4. Diversities of attention maps for different modalities with or without CCS in different blocks.

on them. A model that is capable of dealing with large-
scale multi-modality data is extremely significant for table
information registration and data analysis. With the devel-
opment of smart phones, a large amount of table images are
captured by mobile cameras in realistic application. Differ-
ent from regular table images obtained by scanner or pars-
ing PDF metadata, those captured by mobile device contain
more distractors (e.g., distortion). Table structure recogni-
tion (TSR) algorithm plays as the front-end role that con-
verts input table image to machine readable data, which is
vital to the whole document processing system. However,
most of existing TSR methods are merely designed for reg-
ular tables and cannot generate satisfactory results from ta-
ble cases with more challenging distractors. Thanks to the
more effective capture of inter-intra modality interaction,
our model tailored for Hetero-TSR can yield more precise
results, especially under more challenging scenarios, which
is demonstrated by extensive experiments. In other words,
our model can not only greatly save labor costs and im-
prove document processing efficiency, but show more ex-
tensibility in application scenarios. Besides, we provide a
successful attempt in the direction of investigating the col-
laborative patterns with and between modalities. We en-
courage researchers to build graph embedding models based
on NCGM for other graph-based tasks we can expect to be
particularly beneficial.
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Figure 5. Sample TSR output of NCGM on table images of various datasets. The first, second and last column indicate the predictions of
cells, rows and columns respectively.



(a) Cell Relationships

(b) Row Relationships

(c) Column Relationships

Figure 6. Failure cases of NCGM on table with more complex structure.
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