
Supplementary Materials:
Neural Rays for Occlusion-aware Image-based Rendering

Yuan Liu1 Sida Peng2 Lingjie Liu3 Qianqian Wang4 Peng Wang1

Christian Theobalt3 Xiaowei Zhou2 Wenping Wang5

1The University of Hong Kong 2Zhejiang University 3Max Planck Institute for Informatics
4Cornell University 5Texas A&M University

1. Comparison between NeRF [4] and NeuRay
In this section, we will compare NeRF [4] with NeuRay

on parameterizing different probabilities on a ray. Let us
first review NeRF’s definitions of different probabilities.

NeRF’s parameterization. Given a ray p(z) = o +
zr with {pi ≡ p(zi)|i = 1, ..., N ; zi < zi+1; zi ∈ R+}
sample points on the ray, NeRF computes the densities of
these points by di = F(pi), where F is an MLP. Then, the
alpha values on these points are computed by αi = 1 −
exp(−ReLU(di)li), where li = zi+1 − zi. In this case, the
visibility from the ray origin o to the point pi is

vi =

i−1∏
j=1

(1− αj). (1)

The hitting probability, which means the ray is not oc-
cluded by any depth up to zi and hits a surface in the range
(zi, zi+1), is

hi = viαi (2)

This process is summarized by Fig. 1 (a), where all proba-
bilities are based on the density di.

NeuRay’s parameterization. In comparison, all prob-
abilities in NeuRay are based on the occlusion probability
t(z). Given an input ray, we also sample points {pi ≡
p(zi)|i = 1, ..., N ; zi < zi+1; zi ∈ R+}. Based on t(z),
we compute the hitting probability h̃i (Eq.(7) in the main
paper) and the visibility vi

h̃i = t(zi+1)− t(zi), (3)

vi ≡ v(zi) = 1− t(zi). (4)

We use h̃ here to indicate it was defined on an input ray.
Then, noticing the relationship between the visibility, the
hitting probability and the alpha value in Eq.(2), we can
compute the alpha value α̃i on pi from h̃i and vi by α̃i =
h̃i/vi = (t(zi+1)−t(zi))/(1−t(zi)), which is the Eq.(9) in

Density 𝑑𝑖

Alpha value 𝛼𝑖

Visibility 𝑣𝑖 Hitting prob ℎ𝑖

Hitting prob ෨ℎ𝑖Visibility 𝑣𝑖

Occlusion prob 𝑡𝑖

Alpha value ෤𝛼𝑖

(a) From Density (b) From Occlusion Prob

Alpha value ො𝛼𝑖

Hitting prob ෠ℎ𝑖

On input ray On test ray

Figure 1. Comparison between the density in NeRF and the occlu-
sion probability in NeuRay. (a) In NeRF, the network decodes the
density to compute the alpha values, the hitting probability and the
visibility. (b) In NeuRay, the network decodes the parameters of
occlusion probability, which enables efficient computation of the
visibility and the hitting probability. Then, we derive the corre-
sponding alpha values from the hitting probability and visibility.

the main paper. α̃ also means it is defined on an input ray.
This process is summarized by Fig. 1 (b), which is inverse
to the density definition in NeRF.

Motivation of designing the hitting probability ĥ as
the form in Sec. 3.6. Our motivation is explained as fol-
lows. When we need to compute the hitting probability on
the sample points pi of a test ray, we need to derive the al-
pha values α̂i on these points and compute the hitting prob-
ability by ĥi =

∏i−1
j=1(1− α̂j)α̂i. Note we use α̂ to indicate

that it is defined on the test ray and to distinguish it from the
alpha value α̃ defined on input rays and the alpha value α
computed from the constructed radiance field. To compute
α̂i, we choose to use the weighted sum of alpha values α̃
from all input rays with their visibility as weights

α̂i =

∑
j α̃i,jvi,j∑

j vi,j
. (5)

This is the Eq.(10) in the main paper. By considering the
visibility, only visible input rays can affect the alpha values
α̂ of the point. Finally, the alpha value α̂i is used in the
computation of ĥi =

∏i−1
j=1(1− α̂j)α̂i.

1

2. Discussion about visibility from density
In the main paper, we have discussed that parameteriz-

ing the visibility with volume density is computationally
impractical, because it requires Kr times forward pass of
the network F to compute visibility from one input view
to one 3D point. For example, given only 1 test ray and
8 neighboring input views, we sample 128 points on this
test ray. Then, to compute the visibility from every input
view to every sample point, we need to consider 8×128 in-
put rays. If we further sample 32 points on every input ray
to accumulate volume density for visibility computation. It
will require 8×128×32 times evaluations of the network F .
Such computation complexity is not affordable for training
on a single 2080 Ti GPU to achieve reasonable results.

3. Memorization interpretation in finetuning
ℓconsist enables the NeuRay representation to memorize

the predicted surfaces from the constructed radiance field in
finetuning. An example is shown in Fig. 2.
1. In one training step as shown in Fig. 2 (a), NeuRay

chooses view A as the pseudo test view and aggregates
features from neighboring input views B, C and D to pre-
dict hi of the test ray on the test view A.

2. Applying the consistency loss ℓconsist forces the visibil-
ity feature g of the test ray of A to produce h̃i consistent
with hi. This can be interpreted that the hi is memorized
in g, which also means the memorization of visibility,
because both are computed from t(z).

3. In subsequent another training step which uses view A,
B and C to render the pseudo test view D in Fig. 2 (b),
NeuRay already knows that the green point is invisible
to A by checking the memorized visibility on A. Hence,
NeuRay is able to predict an accurate hi for view D.

4. The predicted hi on the test ray of view D is also mem-
orized on D and helps the prediction of hitting probabili-
ties of other views in the subsequent training steps.

By memorizing the scene geometry in hi, NeuRay is able
to refine its scene representation to provide better occlu-
sion inference during finetuning. In contrast, existing meth-
ods [1, 6, 7, 11] can only adjust their network parameters to
improve their feature aggregation during finetuning, which
are still oblivious to occlusions in the scene.

4. Training details and architecture
Architecture. In the cost volume construction, Ns = 3

neighboring input views are used as source views and the
height and width of the cost volume are 1/4 of the height
and width of the original image. The cost volume is con-
structed by a MVSNet [9] pretrained on the DTU training
set. When training our renderer, we fixed the weight of this
MVSNet due to GPU memory limitation but it is possible

Working view Test view Surface

(a)

A

B

C

D
memorized

Test ray Input ray

A

B

C

D

(b)

Figure 2. (a) During finetuning, when rendering the pseudo test
view A using view B, C, and D, the predicted hitting probabilities
and the corresponding visibility will be memorized on view A. (b)
Afterwards, the memorized visibility on view A will be used for
occlusion inference in rendering the pseudo test view D.

to train this part for better performance. The architecture
is illustrated in Fig. 9 and Fig. 10. The image encoder is a
ResNet [2] with 13 residual blocks which outputs a feature
map with 32 channels. All convolution layers use ReLU as
activation function and all batch normalization layers are
replaced by instance normalization layers. Compared to
IBRNet [7], our image encoder is more lightweight with
less intermediate channel number and less residual blocks.
The distribution decoder F contains 5 sub-networks, each
of which consists of 3 fully-connected layers. These sub-
networks are in charge of the prediction of µ1, µ2, σ1,
σ2 and mixing weight w0 respectively (w1 = 1 − w0).
All fully-connected layers in F use ReLU as the activation
function except for the final layer which use SoftPlus or Sig-
moid as the activation function.

The architecture of feature aggregation networks follows
design of IBRNet [7], which is illustrated in Fig. 10. Based
on the aggregated feature, the alpha value αi is computed
by

αi = A(fi), (6)

where A is an alpha network. The color ci is computed by

ci = B(fi, {fi,j ; ri,j − r; ci,j ; vi,j}), (7)

where B is a color blending network, ri,j is the view di-
rection from j-th input view to the point pi, and ci,j is the
color of this point projected on the input view. The alpha
network A will learn to assign a large alpha value αi to pi

when local image features {fi,j} of all visible input views
are consistent. Meanwhile, the color blending network B
will learn to use the color ci,j from visible views to pro-
duce the color ci on pi.

Depth loss. In pretraining the generalization model on
training scenes, we also force the mean µ1 of the first logis-
tics distribution to be similar to the input depth by a depth
loss ℓdepth

ℓdepth =
∑

∥µ1 − zin∥2, (8)

IBRNet [7] NeuRay GT IBRNet [7] NeuRay GT

Figure 3. Qualitative results using only 2 neighboring working views to render the test view.

where the depth zin is computed from the cost volume or
the input estimated depth maps.

Training details. We use Adam [3] as the optimizer with
the default setting (β1 = 0.999,β2 = 0.9). On every train-
ing step, 512 rays are randomly sampled. The initial learn-
ing rate for the generalization model is 2e-4 which decays
to its half on every 100k steps. We train the generalization
model with 400k steps on the training set, which takes about
3 days on a single 2080Ti GPU. In the finetuning setting,
the learning rate is initially set to 1e-4 and it also decays to
its half after 100k training steps. Finetuning 200k steps on
a NeRF synthetic dataset with resolution 800×800 cost 20
hours but finetuning 200k steps on low resolution images
with 400×400 can be faster, which costs 8 hours.

5. More comparison with baselines

Sparse working views on the LLFF dataset. As dis-
cussed in the main paper, the reason that our method and
IBRNet [7] perform very similar on the LLFF dataset is
that the LLFF dataset contains very dense forward-facing
views, which alleviates the feature inconsistency caused by
occlusions. To demonstrate that, we decrease the num-
ber of working view Nw to render the novel images. We
show the qualitative results with 2 working views in Fig. 3
and the PSNR on the LLFF dataset with different num-
ber of workings views in Table 3. The results show that
out method consistently outperforms IBRNet and the per-
formance gap enlarges with the decrease of working view
number. The reason is that with the decrease of working
views, every 3D point is visible to input views so that the
feature inconsistency caused by occlusions becomes more
severe. Hence, because feature aggregation of IBRNet is
not very robust to feature inconsistency, its performance de-
generates. In contrast, with the constructed NeuRay, our

GT NeRF [4] NeuRay

Figure 4. Qualitative comparison with NeRF [4].

method is occlusion-aware and thus performs better with
sparse views. Meanwhile, we also find that undistortion by
COLMAP [5] is not perfect and noticeable distortions still
remain in the LLFF dataset, which makes the scene-specific
optimization of all methods struggles to improve.

More qualitative comparison with NeRF. In Fig. 4, we
show more comparison with NeRF [4], in which our method
can recover details more clearly than NeRF with the same
training steps on the given scene.

Dataset Metrics Cost volume Depth maps

NeRF Syn.
PSNR 28.29 28.92
SSIM 0.927 0.920
LPIPS 0.080 0.096

DTU
PSNR 26.47 28.30
SSIM 0.875 0.907
LPIPS 0.158 0.130

LLFF
PSNR 25.35 25.85
SSIM 0.818 0.832
LPIPS 0.198 0.190

Table 1. Results in the generalization setting using NeuRay initial-
ized by estimated depth maps [5] or constructed cost volumes [9]

Nw = 8 Nw = 12 Nw = 16

PSNR 32.97 33.20 33.60

Table 2. PSNR on the Lego from the NeRF synthetic dataset with
different working view numbers Nw.

Method Nw = 8 Nw = 4 Nw = 2

IBRNet [7] 26.87 25.41 21.72
NeuRay 27.06 26.43 24.86

Table 3. PSNR on the LLFF dataset with Nw = 2, 4, 8 working
views. The performance of IBRNet [7] drops with the decrease
of working views while NeuRay still performs well with only 2
working views. All models are already finetuned on the scene for
200k steps.

Setting Method N = 100 N = 75 N = 50

Gen NeuRay 28.41 28.06 26.31
IBRNet 25.64 25.16 23.68

Ft NeuRay 32.97 32.71 31.40
IBRNet 30.37 28.57 25.68

Table 4. PSNR on the Lego with different input view num-
bers. With the decrease of view number, the performance de-
creases but NeuRay consistently outperforms IBRNet with differ-
ent view numbers. “Gen” means the generalization setting while
“Ft” means finetuning on the scene.

6. Initialize from estimated depth maps
Besides initialization from the cost volumes, NeuRay

could also be initialized from estimated depth maps by
patch match stereo in COLMAP [5]. In Table 1, we show
that initialization from estimated depth maps also produces
good rendering results. Especially on the DTU dataset,
COLMAP produces more accurate reconstruction than cost

N = 100 N = 75 N = 50

Figure 5. Qualitative results in the generalization setting with dif-
ferent input view numbers. Row 1 shows the results of IBRNet [7]
and Row 2 shows the results of NeuRay.

volumes so that the rendering quality is better.

7. View consistency with more working views
Can more working views improve the rendering qual-

ity? We observe that simply using more working views on
our trained model does not lead to obvious improvements,
because the model is finetuned with 8 working views. How-
ever, finetuning our model with more working views indeed
improves the rendering quality. We finetune our model with
different numbers of working views 8, 12, 16 on the Lego
from the NeRF synthetic dataset. The results are shown in
Table 2. We can see that training with more working views
improves the results. The reason is that adding more work-
ing views in training means using more views for the fea-
ture aggregation to reconstruct the scene geometry, which
enforces the view consistency and improves the accuracy of
estimated surfaces.

8. Results with sparse input views
To investigate how the performance degenerates as the

decrease of the number of input views, we reduce the in-
put views of the Lego of the NeRF synthetic dataset from
100 to 75 and 50 by the farthest point sampling on camera
locations. The PSNR is reported in Table 4 and qualita-
tive results are shown in Fig. 5. The performance degrades
reasonably as the input views become sparser but is consis-
tently better than IBRNet.

9. Estimation of depth maps
We can decode a depth map from NeuRay on a input

view. Along every input ray, we evenly sample points and
use the depth of the sample point with the largest h̃i as the
depth of this input ray. In Fig. 6, we show the depth maps

Initial Finetuned

Figure 6. Depth maps computed on the input views. Left are pro-
duced by initialized NeuRay and Right are produced by finetuned
NeuRay.

from the initialized and the finetuned NeuRay representa-
tion. The results show that initialized NeuRay already pro-
duces a reasonable depth maps and optimizing NeuRay rep-
resentation is able to enforce the consistency between views
and rectify erroneous depth values. In light of this, finetun-
ing NeuRay may also be regarded as a process of depth fu-
sion or a consistency check for MVS algorithm, which takes
coarse depth maps as input and outputs refined consistent
depth maps. However, unlike commonly-used consistency
check which simply discards erroneous depth, optimizing
NeuRay is able to correct these erroneous depth.

10. Additional ablation studies

We have conducted additional ablation studies on some
of our network designs in Table 5.
1) Adding ℓconsist in the generalization training. ℓconsist
is designed in scene-specific finetuning to memorize the ge-
ometry. Adding the loss in cross-scene generalization train-
ing produces similar results as the model without the loss.
2) Optimize G′ only or network parameters only. Either
leads to inferior results because only optimizing G′ will dis-
able refinement of feature aggregation while only optimiz-
ing networks will disable refinement of scene geometry in
finetuning.
3) Number of mixed distributions Nl. Nl limits the maxi-
mum number of semi-transparent surfaces to be represented
on an input ray. However, we find that increasing Nl from 2
to 3 does not bring significant improvements because there

Generalization Finetuning
Description PSNR Description PSNR

Default NeuRay 28.41 Default NeuRay 32.97
Add ℓconsist 28.46 Optimize vis./net. only 32.25/31.90

Nl = 3 28.44 Nl = 3 33.00
Finetune G 32.43

Table 5. Additional ablation studies on the Lego from the NeRF
Synthetic dataset, reported in PSNR.

are few semi-transparent surfaces in most cases.
4) Finetune G instead of G′. Finetuning G′ with visibil-
ity encoder produces better results than finetuning G (+0.5
PSNR). The reason is that the convolution layers in the vis-
ibility encoder associate nearby feature vectors of trainable
G′ and these nearby pixels usually have similar visibility.

11. Direct rendering from NeuRay
Can we render a novel view image from the NeuRay

representation without constructing a radiance field?
Yes, we can render an image directly from NeuRay,

which is called the direct rendering of NeuRay. Given a
test ray o + zr with sample points {pi}, we will compute
the output color for this ray by ĉ =

∑
i ĉiĥi. In Sec. 1, we

already show how to compute ĥ. The only remaining prob-
lem is how to compute the color ĉi of each sample point
directly from NeuRay. To achieve this, we adopt a tradi-
tional Spherical Harmonics Fitting here.

We use a set of spherical harmonic functions as basis
functions to fit a color function R : S2 → R3 on ev-
ery point. Specifically, we solve the following linear least
squares problem

min
θi

∑
j

h̃i,j(zi,j , zi,j + li)∥R(ri,j ;θi)− ci,j∥2 + θ⊺
i Λθi,

(9)
where h̃i,j is the hitting probability of point pi on the input
ray emitted from the j-th input view, R the color function,
θi the coefficients of spherical harmonic basis functions on
this point, ri,j and ci,j are the viewing direction and color
of the input ray emitted from the j-th view, respectively,
θ⊺
i Λθi a regularization term, and Λ a predefined diagonal

matrix. This linear least squares problem has a closed-form
solution. After finding the solution θi to Eq.(9), the color
ci is computed by

ci = R(r;θi). (10)

Note that in Eq. (9), the color difference is weighted by hit-
ting probabilities so that occluded input rays will not inter-
fere the output colors. Meanwhile, since we fit a function
R on the sphere, NeuRay is able to represent anisotropic
colors (or radiance) at a point. NeX [8] and PlencOc-
tree [10], also use spherical harmonics functions as basis

Method Fern Lego

NeuRay-DR 25.27 29.93
NeuRay-RF 25.93 32.97

Table 6. PSNR of Direct Rendering (DR) of NeuRay and render-
ing from the constructed radiance field (RF) with NeuRay.

(a) (b)

Figure 7. Comparison between the direct rendering of NeuRay (a)
and the rendering of the constructed radiance field (b). Direct ren-
dering of NeuRay produces meaningful results but artifacts occur
on the edges. Note the direct rendering is not supervised.

NeuRay NeRF [4]

Figure 8. As an image-based rendering method, NeuRay is un-
able to correctly render the region that is not visible to all working
views, even though such regions are visible on other images. In
comparison, as a global scene representation, NeRF [4] can cor-
rectly render these regions.

functions to represent colors. In implementation, we use
spherical harmonics up to 3 degree and thus θ ∈ R16 and
the diagonal elements of the regularization matrix Λ are
(0, 0.001, 0.005, 0.01) for degree 0 to 3.

Quality of direct rendering. To show the direct ren-
dering of NeuRay can also produce reasonable renderings,
we conduct experiments on the Lego and the Fern using
the finetuned models. The qualitative results are shown in
Fig. 7 and the quantitative results are shown in Table 6. The
results demonstrate that though the direct rendering of Neu-
Ray is not supervised by any rendering loss, it is still able to
produce images with correct structures and details. Further
supervising the direct rendering with a rendering loss may
improve its rendering quality.

12. Limitations
As an image-based rendering method, our method needs

to select a set of working views to render a novel view im-
age. Hence, NeuRay is unable to render pixels that are
invisible to all working views, though these pixels may
be visible in other input views. We show an example in
Fig. 8, in which the region is invisible to all working views.
Meanwhile, our method is based on feature matching of in-
put views to reconstruct the scene geometry. Such feature
matching may struggle to find correct surfaces in texture-
less regions or cluttered complex regions like the Ficus. In
this case, our method may not be able to keep the view con-
sistency and correctly render, leading to rendering artifacts.
Including more input views and working views or improv-
ing the feature matching may alleviate this problem. An-
other limitation is that speeding up rendering with NeuRay
requires an accurate estimation of the surface locations so
that such speeding up is only applicable to the finetuned
model with accurate visibility. In the generalization setting,
the predicted visibility is not accurate enough to maintain
the rendering quality with very few sample points.

References
[1] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard

Pons-Moll. Stereo radiance fields (SRF): Learning view syn-
thesis for sparse views of novel scenes. In CVPR, 2021. 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 3, 6

[5] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In ECCV, 2016. 3, 4

[6] Alex Trevithick and Bo Yang. GRF: Learning a general ra-
diance field for 3D scene representation and rendering. In
ICCV, 2021. 2

[7] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. IBRNet:
Learning multi-view image-based rendering. In CVPR, 2021.
2, 3, 4

[8] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. NeX: Real-time
view synthesis with neural basis expansion. In CVPR, 2021.
5

[9] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long
Quan. MVSNet: Depth inference for unstructured multi-
view stereo. In ECCV, 2018. 2, 4

 Image Encoder

 Visibility Encoder Initialization Network

Conv3x3(32)

ResBlock(32)

H/4*W/4*64

Conv1x1(32)

H/4*W/4*32

Conv3x3(32)

ResBlock(32)

Conv1x1(32)

Conv3x3(32)

ResBlock(32)

Conv1x1(32)

H/4*W/4*32

H/4*W/4*1

H/4*W/4*32

H/4*W/4*32

H/4*W/4*96

H/4*W/4*32

H/4*W/4*32

H/4*W/4*32

Cost Volume
Depth regression

H/4*W/4*64

Visibility Feature

Image feature

ResUNet

H/4*W/4*32

H/4*W/4*32

Visibility Feature Image feature

H/4*W/4*32

H/4*W/4*96

H/4*W/4*32

H/4*W/4*32

Conv3x3(32)

ResBlock(32)

Conv1x1(32)

H/4*W/4*32

Refined Visibility Feature

 Decoder
Refined Visibility
Feature Vector

*4

FC-ReLU(32)*2

FC-SoftPlus(32,1)

FC-ReLU(32)*2

FC-Sigmoid(32,1)

Mean/Var Mixing Weight

Figure 9. Architecture details of networks used in NeuRay.

N*K*1

N*K*32

N*K*32

N*K*32

MLP(1,32,32)

N*K*3

N*K*32

N*K*32

N*K*32

MLP(3,32,32)

N*1*32

N*K*1
MLP(32,32,1)

N*1*32 N*1*32 N*1*32

Mean Var Mean Var

N*K*192C N*K*32
MLP

(192,64,32)

N*K*1

N*K*32

MLP
(32,32,1)

sigmoid

MLP
(32,32,32)

N*1*32N*1*32

Mean Var

N*16

N*16

N*1

MLP
(64,32,16)

Transformer

MLP(16,1)

N*K*3 C

MLP
(35,16,8,1)

N*K*1

N*K*3

N*3

Softmax

Colors

Image
features

View
directions

Visibility

Visibility
features

View
directions

Output
color Alpha

value

Network ℳ

Network 𝓑 Network 𝓐

C

Element-wise plus

Element-wise product

Concatenation

Blending
weights

Figure 10. Architecture details of feature aggregation networks (M,A,B). N is the number of sample points on a test ray and K is the
number of working views.

[10] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 5

[11] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
PixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 2

	. Comparison between NeRF mildenhall2020nerf and NeuRay
	. Discussion about visibility from density
	. Memorization interpretation in finetuning
	. Training details and architecture
	. More comparison with baselines
	. Initialize from estimated depth maps
	. View consistency with more working views
	. Results with sparse input views
	. Estimation of depth maps
	. Additional ablation studies
	. Direct rendering from NeuRay
	. Limitations

