
Supplementary Material
Neural Recognition of Dashed Curves with Gestalt Law of Continuity

A. Training setup
During the training, we use three separated Adam optimizers for Curve Feature Aggregator, Visual Form Reconstructor,

and Semantic Extractor. We set the initial learning rate of each optimizer to be 0.0001. We use the StepLR scheduler from
the PyTorch library to decay the learning rate of Curve Feature Aggregator and Semantic Extractor by 0.95 every 30 epochs.
The learning rate of Visual Form Reconstructor is decayed by 0.9 every 50 epochs. We trained our models using 4 NVIDIA
Titan RTX GPUs with gradient checkpointing [1] and automatic mixed precision.

Given the fact that input images contain different numbers of dashed curves, our framework is slightly different with a
classical auto-encoder: the output curve descriptor list may contain invalid embeddings that do not contribute to the recon-
struction. Even though the ground truths are well-formed to provide supervision, the unbalanced throughput between Curve
Feature Aggregator and Visual Form Reconstructor/Semantic Extractor makes the initial training unstable. To mitigate this
issue, we split the modeling training into three stages: we first warm up the Curve Feature Aggregator with only the endpoint
regression supervision and curve descriptor validity classification supervision until the average classification accuracy reaches
a certain threshold θw = 0.7; we then add Visual Form Reconstructor and Semantic Extractor into training while fixing the
weights of the Curve Feature Aggregator for T = 50 epochs; finally, we jointly train all three modules until convergence.
In the training stages involving Visual Form Reconstructor and Semantic Extractor, we run the forward and backward
process for each dashed curve separately and leverage the gradient accumulation trick to reduce GPU memory usage.

B. Data augmentation
To improve the training efficiency and generalization power, we conduct the following augmentations:
• Addition of Gaussian noise and Perlin noise
• Randomly remove some groups of curves from the data pair
• Random color jittering
• Random horizontal/vertical flip (the order of ground truth groups will be changed accordingly, and the control points

of curves will be changed accordingly also)
• Random 2D translation (the control points of curves will be changed accordingly)

Note that we opt not to use random cropping and resizing since they could lead to corrupted topology (discontinuation of
curves) and aliasing issues.

C. Network architecture
C.1. Curve Feature Aggregator

We use 12 residual blocks with instance normalization for the ResNet-backbone [3] in Curve Feature Aggregator. As
for the Transformer part, we use 6 Transformer encoder blocks and 6 Transformer decoder blocks with layer normalization
and 8 heads of multi-head attention [7]. We set the dimension of the Transformer dtransformer = 128, the dimension of the
feed-forward network dfeedforward = 256. We use a 3-layer FFN with a hidden dimension of 256 to process the Transformer
outputs.

We use the standard U-Net [5] architecture with 5 downsampling layers and 5 upsampling layers for Visual Form Recon-
structor. We replace the first convolution layer with the CoordConv layer [4] and use instance normalization after the U-Net
convolutions. A residual block without normalization layer and a 1x1 convolution layer is used for converting the feature
map from the U-Net output to the raster visual form output.
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C.2. Semantic Extractor

The feature map from Visual Form Reconstructor is converted by a Transformer network in an auto-regressive manner.
We use 8 Transformer decoder blocks with layer normalization and 8 heads of multi-head attention for the Semantic Ex-
tractor. We set the dimension of the Transformer dtransformer = 64, the dimension of the inner feed-forward network
dfeedforward = 128. We use two 3-layer FFN with the hidden dimensionality of 128 to perform the conversion between the
Transformer features and the primitives.

D. Hyperparameters
The hyperparameters used in each loss function are listed as follows.
The curve feature loss
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λe = 0.5, β =
√
max (imageWidth, imageHeight), ncurve is the total number of dashed curves in the input image.

The visual form loss
LV (Lgt, Lr) = (1− λv)‖Lgt − Lr‖22 + λv‖Lgt − Lr‖1 (4)

λv = 0.3
The continuity loss

Leos(eosi, êosi) = −êosi log eosi − (1− êosi) log(1− eosi) (5)
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λp = 0.5, β =
√
max (imageWidth, imageHeight), nprimitive is the total number of primitives belonging to the

semantic curve SCk.
The overall loss
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λV = 3.5, λC = 0.5, ncurve is the total number of dashed curves in the input image.
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E. Application: Dashed curve style editing

Input Detected curves Stylized output 1 Stylized output 2

Figure 1. Style alternation based on semantic curve understanding.

With post-processing, our framework can be used as a dashed curve style editor for technical line drawing and sewing
design patterns. We demonstrate two use cases of our framework for: inverting the solid and dashed curves and modifying
dash style in Figure 1.

F. Experimental results with noisy inputs
F.1. Random degradation
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Figure 2. Experimental results with random degradation.
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F.2. Addition of Gaussian noise
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Figure 3. Experimental results with addition of Gaussian noise.

F.3. Failed cases

(a) (b)

Figure 4. Failed cases.

Our current framework fails to generalize on inputs that are degraded with unseen types of noise, e.g. fibrous noise (4a)
and multi-scale noise (4b). Training with related data augmentations might improve the generalization ability.

G. Dashed curve recognition on real-world inputs
Our framework can benefit downstream tasks which require the correct semantics of dashed curves. We show examples

in the following subsections.

G.1. Stitch line parsing from sewing patterns

In sewing patterns, designers use dashed curves to indicate where the fabric pieces will be stitched together. Our frame-
work can parse stitch lines from sewing patterns and thereby providing correct semantics and labels for garment stitches. In
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that case, our framework can serve as a component of sewing pattern vectorization toolkit [2] and provide better topology
semantics and stitch labels for garment generation from sewing pattern images [6].

(a) Input (b) Detected stitch lines

Figure 5. Stitch line parsing from sewing pattern images.

G.2. Hidden edge detection from technical drawings

In technical line drawings, it is standard practice to use dashed lines or dashed curves to represent any edges of an object
that is hidden from the current view. In this way, dashed curves carry depth information of certain edges of an object. Either
vectorizing a dashed curve as separate curve fragments or completing a dashed curve in raster space would lead to missing
curve semantics or the loss of depth information respectively. Our framework can help recognize hidden edges and vectorize
them with intact curve semantics in technical drawings. With correct semantics of hidden edges, our framework can facilitate
3D reconstruction of objects from single 2D technical drawings [8].

(a) Input (b) Detected hidden edges

Figure 6. Hidden edge detection from technical drawings.

G.3. Digitization of nautical charts

Dashed curves mark channel sides in nautical charts. Our framework can recognize these marks from nautical chart with
continuous semantics and facilitate the digitization of nautical charts.
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(a) Input (b) Detected dashed curves

Figure 7. Detected dashed curves on a nautical chart. The recognition results are obtained from a fine-tuned version of our framework.
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