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A. Preliminary: Multi-Head Self-Attention
Multi-Head Self-Attention (MHSA) [10] is the core

component of the ViT model, on which we build the Syn-
ergistic Context Nominator (SCN) and G-NomMer layer
in our NomMer. Here, we briefly review this preliminary
knowledge. Given queries Q, keys K and values V, Multi-
Head Attention (MHA) is formulated as:

MultiHead(Q,K,V) = Concat(H1,H2, ...,Hh)W
∗,

Hi = Attention(QWQ
i ,KWK

i ,VWV
i ), i ∈ {1, 2, ..., h},

Attention(Q,K,V) = softmax(
QK⊤
√
dk

)V,

where h is the head number and dk is the key dimension.
WQ

i ∈ Rdm×dk ,WK
i ∈ Rdm×dk ,WV

i ∈ Rdm×dv and
W∗

i ∈ Rhdv×dm are corresponding projection matrices. In
particular, the MHA becomes MHSA on the condition that
X = Q = K = V, where X denotes the input. In the G-
MHSA (Fig. 3 in main text) and G-NomMer layer (Fig. 2(b)
in main text) of our NomMer, the global relations of all
tokens are captured by MHSA while the local dependen-
cies of the tokens falling inside the window are built by L-
MHSA (Fig. 3 in main text).

B. More Implementation Details
The NomMer architecture is implemented by Pytorch [8]

and all experiments are conducted on a workstation with 32
NVIDIA A100-80 GB GPUs. All the reported results are
the averaged ones over 10 random seeds. The detailed con-
figurations of NomMer variants and the core pseudo code
of Synergistic NomMer block are elaborated as follows.

B.1. Detailed Configurations of NomMer Variants

The configurations of three variants of NomMer are
given in Tab. 3, including NomMer-T, NomMer-S and
NomMer-B, which refer to tiny, small and base model sep-
arately. In the “S-NomMer”, the parameters of three types
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of candidate context aggregators (from top to bottom are
“CNN”, “L-MHSA”, “G-MHSA”) are separated by dotted
lines.

B.2. Pseudo Code of Synergistic NomMer Block

Algorithm 1 S-NomMer pseudo code.
Input: F
Output: F(S)

/* Compressed Global Context Aggregator. */
1 Function CGCA(F):

/* Discrete Cosine Transform. */
2 f ← DCT(F)

/* Low-Frequency Perceiver. */
3 f̂ ← LFP(f)
4 f̂ (G) ← Conv(G-MHSA(f̂))

/* Inverse Discrete Cosine Transform. */
5 F(G) ← IDCT(f̂ (G))

6 return F(G)

/* Synergistic Context Nominator. */
7 Function SCN(F(L),F(C),F(G)):
8 Ω ← Conv(F(L) + F(C) + F(G))

9 F(S) ← Nominate(Ω,F(L),F(C),F(G))

10 return F(S)

/* Synergistic NomMer. */
11 Function S-NomMer:
12 F(L) ← L-MHSA(F)
13 F(C) ← CNN(F)
14 F(G) ← CGCA(F)
15 F(S) ← SCN(F(L),F(C),F(G))

16 F(S) ← F(S) + FFN(F(S))

17 return F(S)

C. Image Classification on ImageNet-21K

Experimental setting. We further pre-train NomMer on
the larger ImageNet-21K dataset, which contains 14.2M im-



ages and 21K classes. During pre-training stage, we employ
the AdamW [7] optimizer with a weight decay of 10−2, an
initial learning rate of 10−2, and a batch size of 4,096 for 90
epochs with the input size of 2242. In ImageNet-1K fine-
tuning, we train the models for 30 epochs with a batch size
of 1,024, a constant learning rate of 10−5, and a weight de-
cay of 10−8 on 2242 and 3842 input.

ImageNet-21K 2242 finetuned models

Method
#param.

(M)
FLOPs

(G)
Top-1
(%)

Swin-B [6] 88 15.4 85.2
NomMer-B 73 17.6 85.5

ImageNet-21K 3842 finetuned models

Method
#param.

(M)
FLOPs

(G)
Top-1
(%)

R-101x3 [4] 388 204.6 84.4
ViT-B/16 [2] 86 55.4 84.0
ViL-B [14] 56 43.7 86.2
Swin-B [6] 88 47.1 86.4
NomMer-B 73 56.2 86.6

Table 1. Comparison of different backbones on ImageNet-21K
classification.

Performance. The results of pre-training on ImageNet-
21K are summarized in Tab. 1, from which we can see that
our NomMer-B obtains 85.5% and 86.6% top-1 accuracy
under 2242 and 3842 input size setting. Compared with the
second best method, Swin [6], our method can outperform
it by at least 0.2%.

D. Object Detection on COCO with Various
Frameworks

Experimental setting. To further verify the effectiveness
of our proposed NomMer when working in different de-
tection frame works, we conduct extensive experiments by
training four typical object detectors on COCO dataset,
including Cascade Mask R-CNN [1], ATSS [15], Rep-
PointsV2 [13] and Sparse R-CNN [9]. For a fair compar-
ison, we utilize the same experimental settings for all four
detectors. More concretely, all the models are training with
3× schedule, multi-scale training, AdamW [7] optimizer,
initial learning rate of 10−4, weight decay of 5× 10−2, and
batch size of 16.

Performance. The box mAPs on COCO are reported in
Tab. 2. As one can see, the NomMer-T witnesses the sub-
stantive improvements on the performance of different de-
tectors, which demonstrates our NomMer architecture is a
versatile backbone for various object detection approaches.

Method Backbone
#param.

(M)
FLOPs

(G)
AP b

(%)
AP b

50

(%)
AP b

75

(%)

Cascade Mask
R-CNN [1]

Res50 [3] 82 739 46.3 64.3 50.5
Swin-T [6] 86 745 50.5 69.3 54.9
Focal-T [12] 87 770 51.5 70.6 55.9
NomMer-T 80 755 51.8 70.8 56.0

ATSS [15]

Res50 [3] 32 205 43.5 61.9 47.0
Swin-T [6] 36 212 47.2 66.5 51.3
Focal-T [12] 37 239 49.5 68.8 53.9
NomMer-T 30 237 49.8 68.6 54.0

RepPointsV2 [13]

Res50 [3] 43 431 46.5 64.6 50.3
Swin-T [6] 44 437 50.0 68.5 54.2
Focal-T [12] 45 491 51.2 70.4 54.9
NomMer-T 41 486 51.6 70.7 55.1

Sparse
R-CNN [9]

Res50 [3] 106 166 44.5 63.4 48.2
Swin-T [6] 110 172 47.9 67.3 52.3
Focal-T [12] 111 196 49.0 69.1 53.2
NomMer-T 104 195 49.5 69.3 53.7

Table 2. Results on COCO object detection across different object
detection methods.

E. More Visual Interpretability

E.1. Nomination Maps on Different Tasks

For the image classification task, we visualize more
nomination maps in Fig. 1 of this appendix, which also fol-
lows the similar patterns described in the Sec. 4.5 of main
text.

Additionally, in Fig. 2 of this appendix, we also vi-
sualize the nomination maps from intermediate layers of
S-NomMer blocks when semantic segmentation and ob-
ject detection frameworks adopting NomMer-B as back-
bones (corresponding to the results in Tab. 2 and Tab. 3 of
main text). Compared to the maps on classification task,
the nomination maps of dense prediction tasks exhibit dif-
ferent context synergy patterns. Although the CNN con-
text features are also predominant in low-level nomination
maps (“Layer 1 1”), the context aggregated by L-MHSA
is hardly observed in the first stage layers (“Layer 1 ∼”).
Instead, most regions of “Layer 1 3” maps mainly pick
up global context accompanied with CNN context focus-
ing on the salient object details, such as outlines of wheels
or buildings. The “Layer 1 5” maps further witness the
domination of global context. We attribute these phenom-
ena to the larger spatial size of early-stage blocks provid-
ing sufficiently precise spatial information, which is indis-
pensable to the dense prediction tasks. This explanation can
also be confirmed by the Non-local Neural Networks [11],
where the most significant improvement on performance is
achieved by inserting the SA-based non-local block in the
early stage. In contrast, the “non-local” behavior in our
method is implemented in a more graceful way with object



Output
Size

Layer
Name

NomMer-T NomMer-S NomMer-B

56 * 56
Patch

Embedding
dim 96, conv 4*4 dim 96, conv 4*4 dim 128, 4*4

stage1
56*56

S-NomMer
Block



[
dim 96, conv 1*1,

conv 3*3, conv 1*1

]
·············································
[dim 96, head 2, wsize 7]
·············································
[dim 96, head 2, ksize 8]

× 2



[
dim 96, conv 1*1,

conv 3*3, conv 1*1

]
·············································
[dim 96, head 2, wsize 7]
·············································
[dim 96, head 2, ksize 8]

× 6



[
dim 128, conv 1*1,
conv 3*3, conv 1*1

]
·············································
[dim 128, head 2, wsize 7]
·············································
[dim 128, head 2, ksize 8]

× 6

28*28
Reduction

Module
dim 192, conv 3*3, pool /2 dim 192, conv 3*3, pool /2 dim 256, conv 3*3, pool /2

stage2
28*28

S-NomMer
Block



[
dim 192, conv 1*1,
conv 3*3, conv 1*1

]
·············································
[dim 192, head 2, wsize 7]
·············································
[dim 192, head 2, ksize 4]

× 2



[
dim 192, conv 1*1,
conv 3*3, conv 1*1

]
·············································
[dim 192, head 2, wsize 7]
·············································
[dim 192, head 2, ksize 4]

× 6



[
dim 256, conv 1*1,
conv 3*3, conv 1*1

]
·············································
[dim 256, head 2, wsize 7]
·············································
[dim 256, head 2, ksize 4]

× 6

14*14
Reduction

Module
dim 384, conv 3*3, pool /2 dim 384, conv 3*3, pool /2 dim 512, conv 3*3, pool /2

stage3
14*14

G-NomMer
Block

[dim 384, head 4]× 8 [dim 384, head 4]× 16 [dim 512, head 4]× 16

7*7
Reduction

Module
dim 768, conv 3*3, pool /2 dim 768, conv 3*3, pool /2 dim 1024, conv 3*3, pool /2

stage4 7*7
G-NomMer

Block
[dim 768, head 8]× 2 [dim 768, head 8]× 4 [dim 1024, head 8]× 4

Table 3. Detailed architecture specifications of NomMer.

details taken into account. Compared with the “Layer 1 3”
maps, the “Layer 1 6” maps are inclined to emphasize CNN
contextual features containing details at a more fine-grained
level. In the layers of the second stage (“Layer 2 ∼”),
the local CNN and L-MHSA contextual features are mostly
nominated, where the maps from adjacent layers become
complementary, which is different from the synergistic con-
text pattern on classification task.

In summary, Fig. 1 and Fig. 2 vividly show that our
NomMer can successfully modulate the synergy behavior
of different types of context in terms of specific tasks.

E.2. Representation Structure of NomMer

As aforementioned, the synergy behavior can appear ei-
ther within or across layers, which has been demonstrated
by the Fig. 1 and Fig. 2. To further study the represen-
tation structure learned in our NomMer, we plot the Cen-
tered Kernel Alignment (CKA) similarities [5] between all
pairs of layers across different model architectures in Fig. 3.
Given the representations of two layers X ∈ Rm×c1 and
Y ∈ Rm×c2 , mathematically,

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
,

K = XX⊤,L = YY⊤,

where HSIC is the Hilbert-Schmidt Independence Criterion
which measures the similarity of centered similarity matri-
ces:

HSIC(K,L) =
vec(K′) · vec(L′)

(m− 1)2
,

K′ = HKH,L′ = HLH,

and H = In − 1
n11

⊤ is the centering matrix.
From Fig. 3 (b), we can observe that the local self

attention-based ViT, Swin-B [6], presents the similarity
structure with clear block-like patterns, and the similarity
scores are always high within a “block” which contains sev-
eral adjacent layers while almost become zero outside the
block. By introducing global contextual information, Focal-
B [12] ( Fig. 3 (c)) also exhibits block-like similarity struc-
ture but with more smooth edges, indicating that there still
have representation similarity between layers with larger in-
terval. Compared with ViT models, in the canonical CNN
architecture, ResNet-101 [3] ( Fig. 3 (a)), the representation
within lower layers present more difference while the sim-
ilarities tend to be larger between higher layers. Moreover,
the similarity scores between lower and higher layers are
small.

By comparison, unlike the ViT models with heuristic-
based design in terms of exploiting local or global-local
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Figure 1. Nomination Maps from NomMer-B on Image Classification task. Red: CNN context F(C). Green: Local context F(L). Blue:
Compressed global context F(G). “Layer B L” stands for that map is from the L-th NomMer layer of NomMer blocks at the B-th stage.
Best viewed in color.
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Figure 2. Nomination Maps from NomMer-B on dense prediction tasks including semantic segmentation and object detection. Red: CNN
context F(C). Green: Local context F(L). Blue: Compressed global context F(G). “Layer B L” stands for that map is from the L-th
NomMer layer of NomMer block at the B-th stage. Best viewed in color.

(a) ResNet-101 (CNN) (b) Swin-B (Local ViT) (c) Focal-B (Global-local ViT) (d) NomMer-B (ours)

Figure 3. CKA similarities between all pairs of layers across different model architectures trained on ImageNet-1k. The results are shown
as heatmaps in which the horizontal and vertical axes indexing the layers from input to output. Best viewed in color and zoom in.

context, the representation structure of our NomMer-B has
somewhat similarity with that of ResNet-101 while the
“block” patterns in ViT are also preserved. This more so-
phisticated structure can be attributed to the “dynamic nom-
ination” of NomMer, which effectively integrate the contri-
butions of local and global context.

E.3. More Qualitative Analysis on NomMer

This part will illustrate more evidence on indispensable
design of nominator and G-NomMer block in our method.

Hard sampling vs. soft sampling. By replacing the
Gumbel-softmax in SCN of NomMer with canonical soft-
max, we find that, in contrast to the hard version (Fig. 4(b)),
the local-attention features (green) present dominant in the
learned maps of soft version (Fig. 4(a)). Correspondingly,
the classification activation maps of soft version become
more unstable than hard version. As a result, the top1 accu-
racies of different NomMer variants on image classification
task all drop round 0.4 on image classification task. We
attribute it to the redundancy not well reduced by soft sam-



pling, where local and global features could have negative
impact on each other.

Figure 4. Nomination maps (soft sampling (a) vs. hard sam-
pling (b)) and class activation attention maps from NomMer-B on
image classification task. (c) Nomination maps at stage 3 and 4.

G-NomMer block. As shown in Fig. 4 (c), if the S-
NomMer blocks applied to all stages, the global SA fea-
tures (blue) would be dominant at both stage 3 (Layer3 1)
and stage 4 (Layer4 1). It is probably because the global
context and local context could become homogeneous when
feature size become small at higher-level stage 3 and 4, as
claimed in main text. Therefore, we adopt the G-NomMer
block only equipped with canonical global SA.
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