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A. Proof of Theorem 1

Assumption 1 (A1) We assume the linguistic information
functions as a common-cause of the input visual informa-
tion and the prediction outputs at all timestamps (See Fig.
1). We model the sample image as a “rendered” result of
the label y. Also, we assume the label (words) is gener-
ated according to linguistic information ¢, making the label
y a causal result of c. Hence, linguistic context ¢ and the
character-level visual information xp; are the only two di-
rect factors affecting the probability of y; at timestamp ¢,
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Here, (a) is derived by applying Eq. 1 of Assumption A1l.
The integral term can be interpreted as an ensemble of “an-
chored prediction” P(y|x[y, c) over all possible contexts
¢, which is similar to the hidden anchor mechanism [£].
Hence, we call this theorem the anchor property of context.
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Figure 1. Causal graph of our Decoupled Context Anchor mecha-
nism.

B. Proof of Theorem 2

Assumption 2 (A2) The shape (character visual informa-
tion) of a character and its context (linguistic information)
are independent given the character yj, i.e.,
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Theorem 2: The Separable Property of Linguistic Infor-
mation and Character Visual Information

Given assumption A2 holds, the effect of character vi-
sual information over label P(yy|wy) and the effect
of P(yplc) can be separated from contextual prediction
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Here, ) is the character set. Step (a) and (b) is derived
using Eq. 3 in assumption A2. Step (c) is derived by apply-
ing Bayesian rule over P(z |y[t]) and canceling xf;) . Al-

thou , Pr y/ , X[y, C) 18 not a constant number an
hough 3% Pr(yy, @ ber and
[t]

may vary with timestamp ¢, but it is the same for all label
Yy at a certain timestamp ¢, hence step (d) holds, despite
the constant factor can change.

C. Proof of Theorem 3

Combining Theorem 1 and Theorem 2, we have the De-
coupled Context Anchor mechanism,
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The visual prediction can be taken out of the integral as
it is not affected by the linguistic information, i.e., c. Here,
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and it is a character frequency term related to the word.
During training, 5(y*) only associates with the label, hence
would be constant for a certain label and won’t produce gra-
dient. During the evaluation, as the dictionary and character
frequency are unknown, character frequency would be as-
sumed as uniform, resulting in 3(y) being a constant num-
ber m for all words with length {. Hence, despite vary-
ing from word to word, treating it as a constant does not
affect either training or evaluation. As a result, 3 is omitted
for writing convenience.

D. An Engineering Perspective of OpenCCD

While the main paper puts more stress on the theoret-
ical part of the framework, we present an engineering per-
spective of the OpenCCD framework which focuses on how
things are implemented over what each module does.

D.1. DSBN-Res45

In this work, the DSBN-Res45 (Fig. 2) is used to encode
word images and glyphs into corresponding visual features.
The DSBN-Res45 backbone is a modified version of the 45-
layer ResNet used in [14]. Here, we replaced all its batch
norm layers with re-implemented DSBN [2] layers. This
adaption is made to alleviate the impact of the bias between
the word image domain and the glyph domain. Specifically,
the network uses the same set of convolution kernels for
both word-level images and glyph images, while using the
domain-specific batch statistics for normalization of each
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Figure 2. The DSBN-Res45 backbone.
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Figure 3. The prototype generation process.

specific domain. The layout of the regular model is simi-
lar to the original DAN implementation [14], and the large
model simply adds more latent channels to the backbone,
and further details like specific network layout can be found
in the released code. This module is a part of the base model
and is used in all models in ablative studies.

D.2. Prototype Generation

The prototypes generation process is shown in Fig. 3 for
each class, the framework first extracts corresponding vi-
sual features of each glyph with the backbone. Then spatial
attention is applied to reduce the feature map to a single
feature via the Attn Module. Specifically, the module first
estimates the foreground/background attention mask with a
convolution layer, then reduces and normalizes the feature
map into corresponding prototypes. Same to [10], a la-
bel may possess more than one prototype as each character
can have different “cases”, e.g., ‘N’ and ‘n’.The prototypes
are normalized to alleviate character-frequency related bias.
This module is also a part of the base model and is used in
all models in ablative studies.

D.3. Data, Training, and Evaluation

The training and evaluation and models for most ex-
periments (all except dictionary-based close-set experi-
ments) are now released to Kaggle'. For the open-set task,
the training dataset is built by aggregating the following
datasets: RCTW [12], Chinese and Latin subset of the MLT-
2019 dataset [11], LSVT [13], ART [4], and CTW [16].
The training character set contains 3755 Tire-1 Simplified
Chinese characters, 52 Latin characters, and 10 digits. Ver-

Uhttps://www.kaggle.com/vsdf2898kaggle/osocrtraining

tical Samples and samples containing characters outside of
the training character set are removed from the training set
(samples with Tradition Chinese Characters are removed as
well). The evaluation dataset contains 4009 horizontal im-
ages from the Japanese subset of the MLT-2019 dataset and
the testing character set includes 1460 characters appearing
in the evaluation set, making a total of 1461 different classes
adding the “unknown” class. For the close-set model, we
use exactly the same datasets as DAN [14], which adopts
the most used MJ [9]-ST [7] combo as the training set. For
the zero-shot Character recognition tasks, we reuse the split
from OSOCR [10], which follows HCCR’s protocol [I].
Note that like HCCR [1], few methods made the exact split
of seen and novel characters public.

During training, a label sampler is used to sample a sub-
set of characters during each iteration like OSOCR. For
word-level tasks, the model processes data is similar to
DAN [14]. Specifically, the model takes 32*128 RGB
clips, where the images are resized keeping aspect ratio and
center-padded into 32*128 with zeros for both training and
testing. The common dictionary-free protocols are used for
all word-level evaluations. For character recognition tasks,
the model treats character images like word images, despite
the clip size being set as 32*64 to speed up. For all three
tasks, we use Notofont as the glyph provider, where each
character is rendered and centered to 32*32 binary patches.
The training processes are mostly the same with DAN [14]
except for adding a prototype generation process.

For evaluation, the most popular evaluation protocol, the
Line Accuracy is used to measure word recognition perfor-
mance following the community. The Character Accuracy
(1-NED) is also used as compensation for open-set word
recognition tasks to give an intuitive insight on the recogni-
tion quality per character. For the zero-shot Chinese Char-
acter recognition task, Character Accuracy and Line Accu-
racy is the same number, simply called Accuracy by the
community.

E. Extra Details
E.1. Notations

‘We made a notation table (Table 1) to include all used no-
tations in this paper. In most cases, hat (7) indicate the max
probable prediction, and asterisk (.*) indicates the ground
truth. Bold notations indicate vectors and capital alphabets

indicate matrices, sets, or distributions.

E.2. About Related Work

Despite the proposed Decoupled Context Anchor mech-
anism (DCA) uses a transformer to model contextual infor-
mation, this work is not directly related to the transformer-
based methods [3, 06, 17]. Structure-wise, the transformer
in our method is a BERT-style transformer encoder, also



Table 1. Important notations in the paper with first occurrence and their brief explanations.

Notation | Occurrence | Explanation
N - Number of glyphs (‘N” and ‘n’ has the same label)
M - Number of characters (labels)
E Fig.2 The collection of the glyph (E,) and semantic embedding (F.)
E. Fig.2 The collection of the glyph (F,) for characters. Each character can have several glyphs
according to how many cases it has.
E, Fig.2 The semantic embedding (E.) for characters. Each character only has one embedding in our
framework.
W, Fig.2 Prototypes generated from E,. W, : R¥V*P N = |E,| and D = 512
1] Eq. 1 Predicted word label, consisted of a ordered sequence of predicted character labels gy
Y Eq. 1 Any word label, consisted of a ordered sequence of character labels yjy.
U1 Eq. 1 ' predicted character.
0 Eq. 1 The trainable parameters of the framework.
T Eq. 1 character visual information of all characters in a word
l Eq. 2 Length of a sequence.
Ty Eq. 3 character visual information of the #*" character in the word
c Eq. 3 Linguistic information.
y* Eq. 4 Ground truth word label, consisted of a ordered sequence of ground truth character labels y["t].
I Eq. 4 Length of the ground truth word.
Ciy Eq. 4 All possible Linguistic information.
Lien Eq. 4 Minus likelihood of the correct length being predicted: —logP(I*|x)
Lyis Eq. 4 Minus likel*ihood of the correct word being predicted according to character visual informa-
tion: — 37, (log P (=)
Lyis Eq. 4 Minus likelihood of the correct word being predicted according to linguistic information:
— Yt log(J <" P(ygylo)P(cla, 1))
Yle] Eq. 5 Any t*" character, applies to any possible character in the character set (means it applies to
predicted and ground truth as well.)
P Ch3.3.3 Function indexes all corresponding prototypes of the input label y;).
Wy Ch3.3.3 A row in W,,.
¢ Ch3.34 Context predicted via transformer. ¢ € R P
Yy Ch3.3.4 | The probability distribution at time stamp t: P(Yg]z() : (P(yfyla)s - Pyl 121))
Y Ch3.34 The probability distribution at all time stamps:
Y € (0, 1)l><]\/[ : (P(Y[O] |x[0])7 ey P(Y[l] |$[l]))
used in [5, 15], while [3,6, 17] uses GPT-style transformer
decoders. Purpose-wise, the transformer in this work is

used as a regularization term (which is the direct reason
we backpropagate to the feature encoder). Instead, [5, 15]
use the transformer as a post-process module by cutting the

gradient flow (Note [

] did not clarify this in their pa-

per, but you can see it from their officially released code).

Conventional transformer-based methods directly decode
the CNN features into prediction sequences. Therefore, the
DCA module is different in terms of structure and motiva-

tion.
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