Opening up Open World Tracking

Supplementary Material

A. Defining Distractor Classes

We observe that some of the objects in TAO are similar
to COCO classes, i.e., visually similar to the set of known
classes, but have different labels. Thus, they cannot be eas-
ily separated into known and unknown. We treat these cate-
gories as distractor classes and ignore them during the eval-
uation (similarly as in existing closed-world multi-object
tracking datasets, e.g., [18,24]).

Different from prior work, finding distractor classes
from over 800 TAO classes is not an easy task. Therefore,
we develop a semi-automatic way to determine the distrac-
tor classes by looking at the COCO-class prediction fre-
quency of a COCO pre-trained Mask R-CNN. We run the
detector on all frames in the TAO validation set and pre-
dict proposals with COCO class labels. These COCO class
prediction frequencies automatically highlight TAO object
classes that are very visually similar to COCO classes. As
an example, if a class ‘minivan’ (in TAO vocabulary) is fre-
quently detected as a ‘car’ class (in COCO vocabulary), we
tag this class for manual verification. This way we mark
42 classes as distractors, see Fig. 8. To ensure distractor
classes do not “leak* into the set of unknown classes, we as-
sign classes to distractors whenever there is any ambiguity
among annotators of whether they are visually or semanti-
cally similar to their associated COCO classes.

B. Implementation Details

Proposal generation We use a Cascade Mask R-CNN
model directly from Detectron 2 [86]. During the inference,
we disable the non-maxima-suppression (NMS) of Mask-
RCNN and obtain 1000 proposals per frame.

Association similarity In the TAO dataset, the videos are
annotated at one frame per second (every 30th frame anno-
tated), and we gather pairs of contiguous annotated frames
(current frame and next frame, 1 second apart). We extract
matching ground truth objects in each frame-pair and form
the set of paired ground truth objects as our evaluation set.
As described in Sec. 5, we apply different similarity mea-
sures to see if given a proposal that matches with ground
truth in the current frame, can be successfully associated
with a proposal matching with the paired ground truth in
next frame. To form a reasonable set of paired ground truths,
two factors must be considered: (i) the ground truths with
the same ID (in the same track) must be present in both
frames; (ii) for each ground truth in current frame, there
should be at least one proposal that overlaps with it with an
IoU > 0.5, and the same for next frame. By forcing these
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Figure 8. Known and distractor object classes The link between

the known (blue) and the distractor (green) indicates visual simi-
larity.
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two constraints, we ensure that the evaluation score will not
be affected by unpaired ground truth or missing proposals,
and therefore the evaluation can sorely focus on the asso-
ciation ability of various similarity measures. To compare
performance, we use top-1 accuracy:

number of successful associations

accuracy = —— o mber of paired GTs

For methods using optical flow in Table 3, we use PWC-
Net [74] (with fine-tuned weights on MPI Sintel [12]) to
calculate optical flow vectors.

C. Additional Experimental Evaluation Re-
sults

In Tab. 4 we outline the results of ablation studies on
various long-term tracking and overlap removal strategies
on TAO-OW val. These results are discussed in Sec. 5.2
and Sec. 5.3 in the main paper.

In Tab. 5 we outline results we obtain with our open-
world tracking baseline (OWTB). We discuss these results
in the Sec. 6 of the main paper.



Known Unknown

OWTA D.Re A.Re APr OWTA D.Re A.Re APr
= Hung. 60.6 788 56.6 613 39.8 497 39.7 534
g Hung.+KA 60.0 788 574 572 39.7 497 40.7 489
Z Hung.+OffTM 60.5 788 584 574 40.2  49.7 42.0 48.6
O Hung. 59.8 785 555 60.7 39.8  49.6 395 54.1
% Hung.+KA 593 784 564 569 40.0 496 41.0 50.1
—~ Hung.+OffTM 59.7 784 57.1 57.0 40.1 496 415 496

Table 4. Long-term tracking and Overlap removal. Ablation
of various long-term tracking and overlap removal strategies on
TAO-OW val. Hung.: Online Hungarian algorithm; KA: Online
multi-step keep-alive strategy, OffTM: Offline tracklet merging.
NO—T: Non-overlap first, and then track. T—NO: Track first,
and then non-overlap.

C.1. Long-term tracking

After obtaining object proposals and determining a
method for calculating the similarity between proposals
over time, we combine all the proposals together into long-
term tracks. We investigate various approaches from prior
work, excluding certain expensive or complex approaches,
such as QBPO optimization [56]. [17] uses Hungarian
matching with a keep-alive mechanism to keep tracks alive
through occlusions or missing detections. [47] first builds
tracklets using Hungarian matching and then merges these
tracklets in a second offline step.

In Table 4 we compare both of these approaches to long-
term tracking, along with just a simple online Hungarian
approach which both build upon. In general, the keep-alive
strategy performs slightly better than without it, but the of-
fline tracklet merging approach works the best of all. Note,
however, that there is only a small difference between all
these approaches. Generally, what one approach gains in
association-recall, it loses most of in association precision.
Successful long-term tracking is still an open challenge in
both open-world and closed-world tracking.

C.2. Overlap removal

Finally, we investigate different approaches for remov-
ing overlaps between different tracks. This boils down to
assigning a score per proposal such that we remove seg-
ments of proposals that overlap with any proposal with a
higher score. We investigate two approaches for scoring
proposals for overlap removal. The first, inspired by [47]
and [17], simply takes the per frame proposal score (which
we investigated earlier) and uses this for determining which
proposals should be given priority to occlude other propos-
als, such that occluded proposals are made smaller to not
overlap. Since this is done at the proposal level, it can be
done before long-term tracking takes place. We call this
‘Non-overlap and then track’. The second approach fol-
lows [56] and performs tracking first on the set of non-
overlapping proposals. Each track as a whole is then scored
using the mean score of each proposal in a track. Then over-

HOTA

DAVIS Unsup. J & F J F KITTI-MOTS car ped.

RVOS [77] 412 36.8 4577 TrackR-CNN [78] 56.5 41.9
PDB [72] 55.1 532 57.0 PointTrack [89] 61.9 544
AGS [81] 57.5 555 59.5 OWTB (Ours) 64.0 52.7
ALBA [25] 584 56.6 60.2
MATNet [92] 58.6  56.7 60.4

STEm-Seg [2] 647 61.5 67.8
UnOVOST [47] 679 664 69.3
OWTB (Ours) 65.5 63.7 67.4

Table 5. Results of our OWTB on closed-world benchmarks
DAVIS Unsupervised (val) and KITTI-MOTS (test), compared to
all previous published methods. *MOTSFusion additionally uses
stereo-depth information.

lap removal occurs using these track scores. Table 4 shows
that these two approaches generally perform very similarly,
though the simpler ‘non-overlap then track’ approach pro-
duces slightly better results.

OWTB vs. previous closed-world trackers. Does a
tracker designed for performing well in open-world track-
ing also work in the traditional closed-world scenario? To
test this, we evaluate our OWTB on two previous track-
ing benchmarks, DAVIS unsupervised [13] and KITTI-
MOTS [78]. We choose DAVIS for video object segmen-
tation, and KITTI-MOTS as it is the most commonly used
MOTS benchmark. For DAVIS we use our own proposal-
generation method. For KITTI-MOTS we use detections
supplied by the benchmarks. Table 5 compares our method
with prior work.

Despite not being tuned for these datasets, OWTB is
competitive on both closed-world benchmarks. Note all
other methods are specifically tuned for these benchmarks
and the particular classes in the benchmark, reinforcing the
strong generalization capability of our method.

D. Limitations and Societal Impacts

Limitations of presented baselines. With our benchmark,

for the first time we are able to evaluate the difficulty of de-

tecting and tracking unknown objects, using our proposed

OWTB (Open World Tracking Baseline). From this we

extract the following insights on the limitations of this ap-

proach, and believe that this could motivate future research
directions:

» Unknown object detection is significantly harder (and
thus less accurate) than known object detection: Un-
known object detections are often incorrectly grouped
into a union of different unknown objects; often only parts
of objects are detected instead of the whole; many ob-
jects are also simply never recalled at all. Unknown ob-
ject detection could be improved by taking into account
temporal context (multi-frame) for detection, effectively
combining elements of tracking and detection.

* Low quality detections make tracking much harder. When



Figure 9. Additional examples of known object categories.

detections can be trusted (as with common classes), track-
ing reduces to identity assignment. When they cannot, the
trackers must be robust to missing or partial detections.
e Fast moving objects, with large deformation, are very
challenging.
e Unknown objects which completely disappear and reap-
pear again are almost never correctly tracked. Building
robust long-term appearance models of previously unseen
objects is a key future research direction.
Relying on labeled data alone limits tracking methods.
Our current approach only transfers knowledge from la-
beled known classes to unknowns. Using unlabeled train-
ing data could result in potentially large improvements..

Societal Impacts. Open-world tracking allows operating in
a world populated by never-before-seen possibly dynamic
obstacles, and learning about semantic concepts with min-
imal supervision. Unfortunately, object tracking also has
privacy and surveillance repercussions, as it can be used
for person tracking. Our work focuses more on the class-
agnostic setting, rather than the well-established pedestrian
tracking, but could be used for this purpose as well.

E. Additional Qualitative Results

We provide the additional examples of known, distrac-
tor and unknown object categories in Figures 9, 10 and 11.
We also show tracking results of our Open-World Tracking
Baseline (OWTB) for knowns, unknowns and unknown un-
knowns in Figures 12, 13 and 14.
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Figure 10. Examples of distractor object categories.
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Figure 11. Additional examples of unknown object categories.



Figure 12. Tracking results for known. Examples of known objects tracked by OWTB. OWTB is capable of tracking objects in cluttered
scenes (second row), and making robust associations despite of motion blur (fifth row).



Figure 13. Tracking results for unknown. Examples of unknown objects tracked by OWTB. OWTB is robust for motion blur (first row,
third image) and large motions (second row).
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Figure 14. Tracking results for unknown unknowns. Examples of unlabeled objects outside of the TAO [16] vocabulary which are
correctly tracked by OWTB. OWTB performs well even for small objects (second and third row).
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