PlaneMVS: 3D Plane Reconstruction from Multi-View Stereo
— Supplementary Material

1. Hypothesis selection for slanted planes

Fig. 1 shows the distribution of the three axes of plane
nT /e sampled from 10, 000 training images. Based on the
distribution, we select (—2,2), (—2,2), (—2,0.5) as the
range of z,y, z axis for n” /e, respectively, to ensure at
least 95% of the groundtruth planes lie within the ranges.
Since our plane hypothesis is a three-dimensional vector,
the computational cost of the cost volume is cubic w.r.t. the
number of hypothesis per axis. To reach a balance between
accuracy and memory consumption, we sample 8 hypothe-
ses uniformly along every axis and finally have N = 83 =
512 plane hypotheses in total.

2. Semantic classes on ScanNet

After merging the semantically-similar categories in
NYU40 [7] labels, we pick 11 classes: wall, floor, door,
chair, window, picture, desk & table, bed & sofa, monitor
& screen, cabinet & counter, box & bin, which are likely
to contain planar structures in indoor scenes. Please refer
to Fig. 2 for some visualization examples of the generated
planar instance and semantic groundtruth from ScanNet [2].

3. Benchmark setup

7-Scenes. 7-Scenes [4] collects posed RGB-D camera
frames of seven indoor scenes. We sample stereo pairs in
the same manner as in ScanNet [2] and follow the official
split to get finetuning and evaluation data. We finally have
26, 358 pairs for finetuning and 15, 508 pairs for evaluation.

TUM-RGBD. TUM-RGBD [&] is an indoor RGB-D
monocular SLAM dataset with calibrated cameras. We ran-
domly select 4 scenes (i.e., frl-desk, frl-room, frl-desk2,
fr3-long-office-household) with 5,013 pairs for finetun-
ing and 2 scenes (i.e., fr2-desk, fr3-long-office-household-
validation) containing 4, 817 pairs for evaluation.

4. Results on 7-Scenes and TUM-RGBD

We have discussed how we deal with 7-Scenes and have
demonstrated its quantitative results in the main paper. Here
we introduce our simple but effective strategy to perform
finetuning with only groundtruth depth. We first generate

pseudo groundtruths of plane masks by getting the predic-
tions with the ScanNet-pretrained model on the testing im-
ages. Then we train our model without plane parameter
losses but maintain other losses. We simply set each loss
weight to 1 instead of adopting the loss term uncertainty
during finetuning since we find it cannot bring much im-
provement. We finetune the model for 5 epochs. The planar
depth gets much improved and we find that the plane de-
tection results also tend to be visually better, which may be
accredited to multi-task training and our soft-pooling loss
to associate 2D with 3D. The same applies to the TUM-
RGBD [8] dataset. Some qualitative examples of 7-Scenes
are shown in Fig. 3.

As shown in Tab. | and Fig. 4, similar to 7-Scenes, our
approach generalizes much better on TUM-RGBD com-
pared with PlaneRCNN [5], thanks to the learned multi-
view geometric relationship. By performing the proposed
finetuning strategy, the results get further improved on both
3D planar geometry and 2D planar detection.

Method AbsRel] SqRel] 6 < 1.257
PlaneRCNN [5]| 0.243  0.105  0.655
Ours 0.143  0.07 0.795
Ours-FT 0.120 0.054 0.851

Table 1. Reconstructed depth on TUM-RGBD dataset [8] of dif-
ferent methods. “Ours” means directly testing with the ScanNet-
pretrained model. “Ours-FT” means testing with the TUM-
RGBD-finetuned model.

5. More Ablation studies

In this section, we discuss the impact of applying differ-
ent hyper-parameters or settings in our experiments. Then
we show qualitative examples on the two components of our
proposed method to intuitively demonstrate their effects.

5.1. Hyper-parameters and settings

Plane hypothesis range. We first study the effect of
the plane hypothesis range we set. We compare the results
of different hypothesis ranges while keeping the hypothesis
number N unchanged: (i) use the same range of (—2, 2) for
the z, y, z axes; (ii) broaden the range to (—2.5,2.5); (iii)
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Figure 1. Plane hypothesis distribution of the three axes.
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Figure 2. Examples of planar semantic and instance groudtruths on
ScanNet [2]. Different colors represent different plane instances
(2™ column) or semantic categories (3" column).

shorten the range to (—1.75,1.75); (iv) employ the same
range of (—2,2) for the x,y axes and a different range of
(—2,0.5) for the z axis. As shown in Tab. 2, setting (iv),
which serves as our default setting, achieves the best re-
sult. The performance drops when using the same range
for all axes as (i), since z values mainly distribute between
(—2,0.5). Using a broader range, e.g. (i) and (ii), covers
some marginal values but decreases the density of the plane
hypothesis, thus leading to less accurate results. In setting
(iv), although shortening ranges can increase the hypothe-
sis density, some non-negligible groundtruth values are not
well covered, thus also leading to worse results.

Hypos range AbsRel| 0 < 1.257
(-2,2) for x,y,z 0.093 0.920
(-1.75, 1.75) for x,y,z 0.094 0.921
(-2.5,2.5) for x,y.z 0.096 0.919
(-2, 2) for x,y; (-2, 0.5) for z| 0.088 0.926

Table 2. Ablation study on the range of slanted plane hypothesis.

Plane hypothesis number. When keeping the plane
hypothesis range constant, varying hypothesis number N
changes the hypothesis density. We test our model using
6, 8, 10 hypotheses per axis, i.e., N = 216,512 and 1, 000
respectively. The results are listed in Tab. 3. As expected, in
general, the higher density we set, the better geometry per-
formance we achieve. The performance gaps among differ-
ent numbers are small, which demonstrates that our model
is robust to these hyper-parameters to some extent. Note
that using N = 1, 000 will substantially increase the mem-
ory consumption. So we choose N = 512 in our default
setting.

Hypos number per axis |[AbsRel] § < 1.257
6 hypos (216 in total) 0.091 0.924
8 hypos (512 in total) 0.088 0.926
10 hypos (1,000 in total)| 0.088 0.927

Table 3. Ablation study on plane hypothesis number.

Method AbsRel| ¢ < 1.251
Pixel-planar w/o pooling 0.091 0.920
Pooling with predicted masks 0.088 0.925

Soft-pooling with predicted masks| 0.088 0.926
Pooling with groundtruth masks 0.087 0.932

Table 4. Ablation study on plane instance pooling with plane
masks during testing.

Plane instance-aware soft pooling. We now evalu-
ate the recovered depths among different pooling strate-
gies reflecting the efficacy of plane detection on the learned
3D planar geometry. As shown in Tab. 4, when evaluat-
ing the depth reconstructed from pixel-level plane parame-
ters, it underperforms the results with plane instance pool-
ing since the generated depth maps cannot capture piece-
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Figure 3. The plane reconstruction results on 7-scenes [4] among different methods. “FT” denotes “finetuned” and “det” is short for
“detection”. Regions with salient differences are highlighted with blue and red boxes. Best viewed on screen with zoom-in.
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Figure 4. The plane reconstruction results on TUM-RGBD [8] among different methods. Regions with salient differences are highlighted

with blue and red boxes. Best viewed on screen with zoom-in.

wise planarity. The result improves when we apply hard-
pooling with predicted plane masks over the pixel-level
plane parameters. Applying soft-pooling weighted with
pixel-level probability further brings a minor improvement
since the probability reflects the confidence of a pixel be-
longing to a plane instance. Finally, we use groundtruth
plane masks to perform pooling, which represents the up-
per bound of the impact of plane detection on geometry.
As expected, it achieves the best result among the settings.
Since groundtruth plane masks are not available during test-
ing, we always apply the soft-pooling with predicted masks

in other experiments.

Depth on planar region. We further compare the re-
constructed depth over only planar regions v.s. the whole
image. Specifically, we conduct experiments only evaluat-
ing depth on the pixels that belong to any of the groundtruth
planes. As shown in Tab. 5, compared with the depth over
the whole image, the quantitative result over planar regions
is better, no matter whether plane-instance-pooling is ap-
plied or not. This demonstrates that our proposed method’s
geometry improvement mainly comes from the pixels of
planar regions, which conforms to our initial motivation and



objective.

Method AbsRel| § < 1.251
Depth over whole image w/o pooling | 0.091 0.920
Depth over planar region w/o pooling| 0.086 0.929
Depth over whole image 0.088 0.926
Depth over planar region 0.081 0.938

Table 5. Ablation study on the evaluations over planar region.

Training dataset scale. In our default setting, we only
sample 20, 000 stereo pairs for training. To analyze the im-
pact of the scale of training data, we sample a larger training
set with 66, 000 stereo pairs from the same scene split but
keep the evaluation split unchanged. As shown in Tab. 6,
our performance can be further improved with more train-
ing data on both plane detection and geometry metrics.

Dataset Scale AbsRel| ¢ < 1.251 AP%?™ 1 APt
20,000 training pairs| 0.088 0.926 0.456 0.564
66,000 training pairs| 0.082 0.934 0.470 0.570

Table 6. Ablation study on the scale of training dataset.

5.2. Qualitative ablation analysis

This section gives some qualitative ablation analysis on
the two components (i.e., convex upsampling and the soft-
pooling loss) used in our method. Fig. 5 shows the efficacy
of convex upsampling. We show the depth map recovered
from pixel-level parameters to eliminate the effect of plane
instance pooling. It is clear that the results upsampled by
convex combination have sharper boundaries and fewer ar-
tifacts than using bilinear upsampling.

Fig. 6 shows the effectiveness of the proposed soft-
pooling loss. The detected planes from the model trained
with the soft-pooling loss are much more complete and
align better with their boundaries.

Image Bilinear Upsampling Convex Upsampling Groundtruth

Figure 5. Effects of the convex upsampling on the depth map from
pixel-level plane parameters. Regions with salient differences are
highlighted with red boxes. Best viewed on screen with zoom-in.

6. Additional visualizations

We provide additional visualizations on predicted in-
stance plane detection, planar semantic map, reconstructed

Image w/o soft-pooling loss
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Figure 6. Effects of the soft-pooling loss on plane detection. Re-
gions with salient differences are highlighted with red boxes. Best
viewed on screen with zoom-in.

planar depth map and 3D point cloud in Fig. 7, from our
testing set on ScanNet [2].

7. Discussions and limitations

Our method v.s. patchmatch stereo. Our method
shares high-level ideas with traditional patchmatch stereo
works [, 3] which aim to estimate a slanted plane for each
pixel on the stereo reconstruction problem. However, our
method differs from them in several aspects. (i) They per-
form patch matching around a pixel within a squared sup-
port window, where the patch size requires to be carefully
set, thus not flexible and adaptive across various real-world
cases. Instead of explicitly defining a patch, we associate
and match the multi-view deep features. This is based on
the observation that a pixel’s receptive field on the fea-
ture map is far beyond itself because of stacked CNNs.
The model can automatically learn the appropriate field for
matching local features with end-to-end training. (ii) These
methods usually first initialize pixels with random slanted
plane hypotheses, then undergo sophisticated, multi-stage
schemes with iterative optimizations. In contrast, we gen-
erate more reliable slanted plane hypotheses based on a
data-driven approach (i.e., analyzing the groundtruth plane
distribution), and learn the pixel-wise plane parameters in
an end-to-end manner, which is much easier to optimize.
(iii) They usually adopt the photometric pixel dissimilarity
as the matching cost function, which is sensitive to illumi-
nation changes and motion blurs across views. In contrast,
we apply a feature-metric matching strategy, which is more
robust to potential noises compared with applying photo-
metric distance.

Potential limitations. Although we have achieved su-
perior performance in most images, our system generates
some failure cases as well. Firstly, as shown in Fig. 8, be-
cause of the large temporal gap, there exist areas in the tar-
get image which are invisible in the source image and thus
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Figure 7. More qualitative results on ScanNet [2], including the instance planar masks, planar semantic map, planar depth map and the
reconstructed 3D point cloud.



do not follow the planar homography relationship. This
issue may be mitigated by introducing a network to learn
the pixel-wise visibility or uncertainty [9]. Secondly, as
in Fig. 9, there exist holes on some adjacent planes recon-
structed from our method. An existing work [0] proposes
to infer and enforce the inter-plane relationship from sin-
gle images. This approach may solve the second issue and
could be incorporated to further improve the final plane re-
construction. We also leave it into future work to explore.
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Figure 8. Failure case I: large temporal gap between two views.
Problematic regions are highlighted with blue and red boxes. Best
viewed on screen with zoom-in.
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Figure 9. Failure case II: holes between adjacent planes. Problem-
atic regions are highlighted with blue and red boxes. Best viewed
on screen with zoom-in.
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