A. Introduction

Due to the page limitation of the paper, we further illustrate our method in this supplementary material, which contains the following sections: 1). Detailed quantitative results of the diversified direction \(w_d\); 2). The results of the proposed \(A^3\) attack across various defense strategies, datasets, network architectures and metrics.

B. Detailed quantitative results of the diversified direction \(w_d\)

In section 3.2 of the main paper, to illustrate that random sampling is sub-optimal, we use ODI [14] to attack 11 defense models, and only give the mean values of \(w_d\) at the \(\hat{y}\)-th (the misclassification label), and the \(y\)-th (the ground truth).

In order to observe the detailed quantitative results of the diversified direction \(w_d\). In this section, we use ODI [14] to attack 12 defense models, including AWP [17], Proxy [12], Fast [16], Feature Scatter [18], Geometry [21], HYDRA [13], Hypersphere [8], MART [15], Regular [5], MART [15], MMA [1] and Pre-training [4]. The experiment settings are the same as the section 3.2 of the main paper. The CIFAR-10 dataset is used in this experiment, there are a total of 10 categories, with 9 error categories and one ground truth.

Among adversarial examples against different models, we summarize detailed statistic results of the direction of diversification \(w_d\) in Fig. 1 and Fig. 2. For each model, there are 9 rows, representing 9 error categories, where “1st” is the error category with the largest output logits, “9th” is the error category with the ninth largest output logits, and so on. There are 10 columns, representing 10 classes (9 error categories and 1 ground truth.), from “1st” to “9th” representing the 9 error categories and “GT” representing the ground truth. For the error categories, we arrange the error categories in descending order according to the output logits of each error category, where the output logits refer to the output logits of the clean example corresponding to the adversarial example we counted. The “i” row and “j” column represent the mean values of \(w_d\) on the “j” class when the adversarial example is misclassified as the error category with the “i” largest output logits. For all rows, we initialize their values to 0. We add up the \(w_d\) of all adversarial examples that are misclassified as the same row and average them. If none of the adversarial examples are misclassified as a error category, then the values of the corresponding row are 0.

From Fig. 1 and Fig. 2, we have the same observations as section 3.2 of the main paper: 1). The diversified direction \(w_d\) disobeys uniform distribution in all cases. 2). The diversified direction for each model has a model-specific bias in the positive/negative direction, specifically, as follows:

(a). The output logits of the error category increases, while the output logits of the ground truth decreases.
For most models (e.g., AWP [17], Proxy [12], Fast [16], Geometry [21], HYDRA [13], Hypersphere [8], MART [15], Pre-training [4]), when an adversarial example is misclassified as an error category, the \(w_d\) for the error category is mostly positive, i.e., the output logits of the error category increases, while the \(w_d\) for the ground truth is mostly negative, i.e., the output logits of the ground truth decreases. This is intuitive because when the output logits of the error category of adversarial examples are greater than the output logits of the ground truth, then the examples are successfully attacked.

(b). The output logits of the error category increases, and the output logits of the ground truth also increases.
However, there are some models whose \(w_d\) is counter-intuitive, such as Feature Scatter [18], Interpolation [19] and MMA [1]. When adversarial examples are misclassified as an error category, the \(w_d\) for the error category is positive, i.e., the output logits of the error category increases, and the \(w_d\) for the ground truth is also positive, i.e., the output logits of the ground truth also increases. Although this model has good adversarial robustness against weaker adversarial attack (i.e., PGD [6]), it is poor in adversarial robustness against stronger attacks (i.e., AA and A\(^3\)). A potential reason is that these defense models use gradient masks [7], and PGD chooses a bad starting point, which hinders the performance.

(c). The output logits of the error category decreases, and the output logits of the ground truth also increases.
The most counter-intuitive is Regular [5], when an adver-
The mean value of diversified direction w_d for all classes

![AWP Diagram]

![Proxy Diagram]

![Feature Scatter Diagram]

![HYDRA Diagram]

The diversified direction of each model has a model-specific bias in the positive/negative direction. In other words, random sampling is suboptimal.

A adversarial example is misclassified as an error category, the w_d for the error category is negative, i.e., the output logits of the error category decreases, and the w_d for the ground truth is positive, i.e., the output logits of the ground truth increases. This model also uses gradient masks, which leads to extremely poor adversarial robustness of this model against stronger attacks.

Since the diversified initialization directions of models have some bias, and are not uniformly distributed, generating model-specific initial directions is very important and helps to obtain better performance.
C. Results of A^3 across various datasets, network architectures and metrics.

In this section, we show the results of the proposed A^3 attack across various defense strategies, datasets, network architectures and metrics. The setup is the same as section 4.1 of the main paper.

Results. As can be seen in Tab. 1, we show the effectiveness of the proposed A^3 across more datasets (e.g., MNIST, CIFAR10, and ImageNet), network architectures (e.g., VGG16, DenseNet161, ShuffleNet, etc.) and metrics (e.g., L∞ and L2). The experimental results show that A^3...
Table 1. The results of the proposed A³ attack across various defense strategies, datasets, network architectures and metrics. The “acc” column shows the robust accuracies of different models. The “→” column shows the iteration number of forward propagation (million), while the “←” column shows the iteration number of backward propagation (million). The “∥∥” column of A shows the difference between the robust accuracies of AA and A³, the “←→” and “←→∥∥” columns of A³ show the speedup factors of A³ relative to AA.

is better than AA on various datasets, model architectures and metrics.

References

