Supplementary Material for ‘“Practical Evaluation of Adversarial Robustness
via Adaptive Auto Attack”

A. Introduction

Due to the page limitation of the paper, we further il-
lustrate our method in this supplementary material, which
contains the following sections: 1). Detailed quantitative
results of the diversified direction wg; 2). The results of
the proposed A? attack across various defense strategies,
datasets, network architectures and metrics.

B. Detailed quantitative results of the diversi-
fied direction wy

In section 3.2 of the main paper, to illustrate that random
sampling is sub-optimal, we use ODI [14] to attack 11 de-
fense models, and only give the mean values of wq at the
y-th (the misclassification label), and the y-th (the ground
truth).

In order to observe the detailed quantitative results of
the diversified direction wg. In this section, we use
ODI [14] to attack 12 defense models, including AWP [17],
Proxy [12], Fast [16], Feature Scatter [18], Geometry [21],
HYDRA [13], Hypersphere [8], Interpolation [19], Regu-
lar [5], MART [15], MMA [1] and Pre-training [4]. The
experiment settings are the same as the section 3.2 of the
main paper. The CIFAR-10 dataset is used in this experi-
ment, there are a total of 10 categories, with 9 error cate-
gories and one ground truth.

Among adversarial examples against different models,
we summarize detailed statistic results of the direction of di-
versification wg in Fig. 1 and Fig. 2. For each model, there
are 9 rows, representing 9 error categories, where “Ist” is
the error category with the largest output logits, “9th” is the
error category with the ninth largest output logits, and so
on. There are 10 columns, representing 10 classes (9 error
categories and 1 ground truth.), from “Ist” to “Oth” rep-
resenting the 9 error categories and “GT” representing the
ground truth. For the error categories, we arrange the error
categories in descending order according to the output log-
its of each error category, where the output logits refer to the
output logits of the clean example corresponding to the ad-
versarial example we counted. The “i” row and “4” column
represent the mean values of wqg on the “j” class when the
adversarial example is misclassified as the error category
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with the “i” largest output logits. For all rows, we initialize
their values to 0. We add up the wq of all adversarial ex-
amples that are misclassified as the same row and average
them. If none of the adversarial examples are misclassified
as a error category, then the values of the corresponding row
are 0.

From Fig. 1 and Fig. 2, we have the same observations as
section 3.2 of the main paper: 1). The diversified direction
wgq disobeys uniform distribution in all cases. 2). The di-
versified direction for each model has a model-specific bias
in the positive/negative direction, specifically, as follows:

(a). The output logits of the error category increases,
while the output logits of the ground truth decreases.
For most models (e.g., AWP [17], Proxy [12], Fast [16], Ge-
ometry [21], HYDRA [13], Hypersphere [8], MART [15],
Pre-training [4]), when an adversarial example is misclas-
sified as an error category, the wgy for the error category is
mostly positive, i.e., the output logits of the error category
increases, while the wg for the ground truth is mostly neg-
ative, i.e., the output logits of the ground truth decreases.
This is intuitive because when the output logits of the error
category of adversarial examples are greater than the output
logits of the ground truth, then the examples are success-
fully attacked.

(b). The output logits of the error category increases,
and the output logits of the ground truth also increases.
However, there are some models whose wqg 1S counter-
intuitive, such as Feature Scatter [18], Interpolation [19]
and MMA [1]. When adversarial examples are misclassified
as an error category, the wq for the error category is posi-
tive, i.e., the output logits of the error category increases,
and the wqy for the ground truth is also positive, i.e., the
output logits of the ground truth also increases. Although
this model has good adversarial robustness against weaker
adversarial attack ( i.e., PGD [0]), it is poor in adversarial
robustness against stronger attacks ( i.e., AA and A3). A
potential reason is that these defense models use gradient
masks [7], and PGD chooses a bad starting point, which
hinders the performance.

(c). The output logits of the error category decreases,
and the output logits of the ground truth also increases.
The most counter-intuitive is Regular [5], when an adver-
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Figure 1. Quantitative statistical results of the diversified direction wgq of adversarial examples on multiple defense models (i.e., AWP [17],
Proxy [12], Fast [16], Feature Scatter [ 18], Geometry [21] and HYDRA [13].). The diversified direction of each model has a model-specific
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bias in the positive/negative direction. In other words, random sampling is suboptimal.

sarial example is misclassified as an error category, the wqg
for the error category is negative, i.e., the output logits of the
error category decreases, and the wg for the ground truth is
positive, i.e., the output logits of the ground truth increases.
This model also uses gradient masks, which leads to ex-
tremely poor adversarial robustness of this model against

stronger attacks.

Since the diversified initialization directions of models
have some bias, and are not uniformly distributed, gener-
ating model-specific initial directions is very important and

helps to obtain better performance.
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Figure 2. Quantitative statistical results of the diversified direction wgq of adversarial examples on multiple defense models ( i.e., Hy-
persphere [8], Interpolation [19], Regular [5], MART [15], MMA [1], Pre-training [4].). The diversified direction of each model has a
model-specific bias in the positive/negative direction. In other words, random sampling is suboptimal.

C. Results of A® across various datasets, net-
work architectures and metrics.

In this section, we show the results of the proposed A®
attack across various defense strategies, datasets, network
architectures and metrics. The setup is the same as section

4.1 of the main paper.

Results. As can be seen in Tab. 1. we show the ef-
fectiveness of the proposed A3 across more datasets (e.g.,
MNIST, CIFARI10, and ImageNet), network architectures
(e.g., VGG16, DenseNet161, ShuffleNet, etc.) and metrics
(e.g., Lo and Ly). The experimental results show that A3



Defense Method ‘ % Metrics Model Clean AA A?
‘ number of test samples acc acc — — acc — —

Undefended ImageNet(5000) Lo (e =4/255) ResNet50 76.74 0.0 0.40  0.39 0.0 0.02(20.0x)  0.005(78.0x)
DARI[11] ImageNet(5000) Loo(e =4/255) WideResNet-50-2  68.46 38.14 15.15 3.82 38.12,0.02 2.67(5.67x) 1.31(2.90x%)
DARI[!1] ImageNet(5000) Lo (e = 4/255) ResNet50 64.10 34.66 13.78 3.49 34.64)0.02 2.47(5.58x) 1.22(2.86x)
DARI[11] ImageNet(5000) Lo (e = 4/255) ResNet18 5290 2530 10.10 2.58 25.1610.14 1.96(5.15x%) 0.96(2.69x)
DARI[11] ImageNet(5000) Ly(e =3.0) DenseNet161 66.14 36.52 14.51 3.67 36.50]0.02 2.59(5.60%) 1.28(2.87x)
DARI[11] ImageNet(5000) Ly(e = 3.0) VGG16-BN 56.24 29.62 11.79 299 29.620.00 2.20(5.36x) 1.08(2.77x)
DARI[11] ImageNet(5000) Ly(e =3.0) ShuffleNet 43.16 17.64 7.08 185 17.560.08 1.58(4.48x) 0.78(2.37x)
DARI[!1] ImageNet(5000) Ly(e =3.0) MobileNet-V2 49.62 2478 9.89 252 24.7410.04 1.94(5.10x) 0.95(2.65x)
Fixing Data [9] CIFAR10(10000) Ly(e =0.5) WideResNet-28-10  91.79 78.80 62.00 15.20 78.79]0.01 5.35(11.59x) 2.63(5.78x)
Robustness [2] CIFAR10(10000) Ly(e =0.5) ResNet50 90.83 69.23 54.56 1345 69.21,0.02 4.72(11.56x) 2.32(5.80x)
Proxy [12] CIFAR10(10000) Ly(e =0.5) WideResNet-34-10  90.31 76.11 59.89 14.69 76.10]0.01 5.18(11.56x) 2.55(5.76x)
Overfitting [10] CIFAR10(10000) Ly(e =0.5) ResNet18 88.67 67.68 53.34 13.15 67.64]0.04 4.61(11.57x) 2.27(5.79x%)
ULAT [3] MNIST(10000) Lo (e =0.3) WideResNet-28-10  99.26 96.34 76.05 1844 96.31]0.03 6.53(11.64x) 3.22(5.71x)
TRADES [20] MNIST(10000) Loo(e =0.3) SmallCNN 99.48 9276 73.12 17.88 92.71,0.05 6.33(11.55x) 3.12(5.73x)

Table 1. The results of the proposed A® attack across various defense strategies, datasets, network architectures and metrics. The “acc”
column shows the robust accuracies of different models. The “—” column shows the iteration number of forward propagation (million),
while the “+” column shows the iteration number of backward propagation (million). The “acc” column of A3 shows the difference

between the robust accuracies of AA and A, the “«+

”and “—

is better than AA on various datasets, model architectures
and metrics.
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